
Empower Secondary School Teachers to Create
ML-Supported Inquiry-Based Learning

Activities

Xiaofei Zhou1,3, Hanjia Lyu1, Yuxin Sa1, Mengfan Li1, Advait Sarkar2, Jiebo
Luo1, Michael Daley1, and Zhen Bai1

1 University of Rochester, Rochester NY 14627, USA
{xzhou50,zbai7}@ur.rochester.edu, {hlyu5, ysa}@u.rochester.edu,

mli82@u.rochester.edu, jluo@cs.rochester.edu, mdaley@warner.rochester.edu
2 Microsoft Research, Cambridge, UK advait@microsoft.com

3 Shanghai Jiao Tong University

Abstract. The rapid advancement of Artificial Intelligence (AI) neces-
sitates preparing the next generation to be AI- and data-literate citizens
and problem solvers. Despite efforts to integrate AI into K-12 educa-
tion, many teachers lack the expertise to create meaningful AI learning
experiences. We developed ML4Inq, an innovative online authoring tool
that enables secondary school teachers to create data-driven inquiry-
based learning (IBL) activities with machine learning (ML) technologies
such as clustering and classification. Findings of a co-design workshop
with 14 secondary school teachers show that teachers successfully cre-
ated a diverse range of curriculum-aligned activities using ML4Inq, in
collaboration with ML experts. We discovered key connections between
ML-revealed patterns and IBL behaviors, offering design implications for
future tools that support ML practices in secondary schools.

Keywords: Authoring Tool · Inquiry-Based Learning · AI Literacy.

1 Introduction

In the era of Big Data and Artificial Intelligence (AI), cultivating data and
computational literacy has become critical to prepare the next generation for a
data-centric world. Machine learning (ML) techniques like clustering and clas-
sification uncover patterns in large datasets, thereby accelerating data-driven
scientific inquiry [17]. In K-12 education, inquiry-based learning [29] encour-
ages students to adopt practices akin to professional scientists for knowledge
construction [23]. Initiatives like AI4K12 [34], CSTA [8], and AI4ALL [1] have
established national guidelines related to applying ML for data analysis in K-12.
These range from teaching K-2 students how computers learn from examples
to engaging 9th–12th graders to train models using supervised or unsupervised
learning algorithms on real-world data and evaluate the results.

However, effective implementation of ML-supported inquiry-based learning
(ML-IBL) in classrooms presents significant challenges, particularly for teachers.
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The complexity of ML concepts, multidimensional data, and statistical reason-
ing creates high knowledge barriers, often overwhelming novices before they
can effectively use ML to process data, discover patterns, and derive meaning-
ful insights [25]. This complexity, combined with students’ lack of ML literacy,
highlights the need for pedagogically sound ML practices that captivate stu-
dents’ interests [33]. However, there remains a critical gap in teaching resources
that support the integration of customized ML practices into IBL, ensuring
alignment with K-12 curriculum standards while addressing teachers’ needs and
interests [33]. Furthermore, over 60% of pre-service math teachers feel under-
prepared to teach statistics [24], let alone the integration of ML, which requires
additional statistical expertise [25].

Our work presents ML4Inq, a web-based authoring tool [40] with low en-
try barriers for secondary teachers to create ML-IBL activities. ML4Inq enables
teachers to explore data, adjust parameters for K-means clustering and K-nearest
neighbors (KNN), interpret ML-revealed patterns, and link with IBL activities
for their classrooms without requiring extensive programming or statistics ex-
pertise. Our main research question is how secondary school teachers incorporate
ML into curriculum-aligned IBL activities using ML4Inq.

We invited 14 secondary school teachers to use datasets of their teaching in-
terests and create ML-IBL activities, by co-designing with ML experts who en-
sured the validity of ML usage. We collected and analyzed 26 ML-IBL activities
with K-12 topics ranging from biology to world history. Teachers applied ML-
revealed patterns to promote various desired IBL behaviors for students, such
as questioning and hypothesis formation [29]. For example, they first developed
hypotheses through cluster analysis, used KNN to retrieve the nearest neighbors
as specific data groups, and analyzed patterns within and between these groups
to test existing hypotheses. Incorrect predictions were used as opportunities to
prompt students to explore potential causes, such as low correlations between
the target variable and the selected independent variables. While this study ref-
erences U.S. educational standards such as NGSS and the Common Core State
Standards (CCSS) [15], the findings and tools could be adaptable for integration
into other national and regional educational frameworks. In summary, our main
contributions include:

1. ML4Inq, a novel authoring tool for teachers to create ML-IBL activities
aligned with the curriculum;

2. A key set of connections between ML-revealed patterns and IBL;
3. Design implications of tools for supporting ML practices in secondary school.

2 Data Analysis and IBL in Secondary Education

Recent advancements in statistics education underscore exploring, modeling, and
understanding the computational aspects of data [13]. This approach seeks to
enhance students’ engagement with data and prepare them for more advanced
topics, such as inferential statistics and ML. However, complex statistical tech-
niques may be inaccessible to younger students.
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To address this challenge, researchers advocate for making computation more
accessible through different programming modalities [36], computational note-
books [4], etc. For example, CODAP, an online data analysis platform with
embedded binary data visualization, has shown promise in engaging secondary
school students in data exploration and analysis [16]. Inq-ITS provides real-time
support for inquiry-based science learning [19]. Computational notebooks and
block-based programming platforms apply cell grouping and labeling features [7]
to improve data sensemaking.

Despite these tool advancements, teachers tend to have low confidence in
teaching statistics [24] or ML-related content [33]. Research also highlights the
practical need for effective instructional resources to contextualize data practices
into STEM and non-STEM curricula [32]. However, a gap exists in supporting
teachers to author authentic ML-IBL activities for their classrooms [21]. Studies
have identified obstacles in data interpretation resulting from unexpected uses,
providing insights to improve educational tools and practices [14].

Research in preparing teachers to teach ML in K-12 settings highlights the
scarcity of teaching resources [25]. Professional development (PD) programs have
been developed for STEM teachers to integrate computational thinking with
science education using Logic Programming [37] or to conceptually create high-
level lesson plans integrating basic ML methods [39]. These initiatives relied
primarily on direct instruction methods, such as presentations and textbooks,
which may not fully connect ML applications with classroom practice.

To address these gaps and obstacles, our design aims to integrate ML-related
data practices into the curriculum through data visualization and IBL [29], a
pedagogical approach familiar to teachers. We focus on three key IBL phases
with direct relevance to data: conceptualization, where students propose research
questions or hypotheses, investigation, where students explore, experiment, an-
alyze, and interpret data, and conclusion, where students evaluate whether their
research questions or hypotheses have been effectively addressed by their study
results. Our design adheres to guidelines for teaching statistics: (1) using large,
multivariate datasets, (2) maintaining contextual relevance, and (3) engaging in
iterative investigation cycles [6]. Additionally, it incorporates essential capabili-
ties of K-12 data science tools [21]: data manipulation, statistical analysis, data
visualization, and dataset availability.

3 Design of ML4Inq

3.1 Design Goals

This section outlines the ML practices and IBL behaviors that ML4Inq aims to
support as an authoring tool and explains the rationale behind them.

Selection of ML practices incorporates cluster analysis and predictive
analysis through K-means clustering and KNN algorithms, respectively, for three
reasons. First, with simplicity, transparency, and interpretability [10], K-means
clustering groups data into a requested number of clusters, and KNN helps with
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Table 1. Three categories of ML practices.

Exploration Customization Evaluation and Analysis

Read attributes: Exam-
ine and understand the
attributes of the dataset.
Read data: Browse the
raw data that will be used
for IBL. Manual cluster-
ing: Manually sort similar
data points together.

Feature selection: Identify
attributes of interest to build
ML algorithms. Update in-
put: Modify the dataset fed
into the ML algorithm. Pa-
rameter adjustment: Fine-
tune the parameters of ML al-
gorithms.

Automatic clustering:
Apply K-means clustering
algorithm for the k value
evaluation and cluster anal-
ysis. Predict with KNN:
Apply the KNN algorithm
for performance evaluation
and predictive analysis.

classification or regression tasks by identifying the nearest neighbors based on
distance. Both algorithms require minimal parameter tuning, allowing teachers
to get started quickly without extensive knowledge of ML concepts. Second,
these two similarity-based algorithms are particularly amenable to visualization,
which provides immediate feedback that facilitates teachers to gradually adjust
parameters and see visual changes in real time.Third, they are widely applicable
across various science and social study domains [3] and are useful for diverse
analysis tasks, such as segmenting data or making predictions.

Based on data science and ML life-cycle (i.e., data exploration, feature engi-
neering, build models, evaluate models) [35], as well as key operations in K-means
clustering and KNN, we define a set of ML practices (Table 1). More details are
described in Section 3.2.

Selection of IBL behaviors is guided by an extensive review of estab-
lished IBL frameworks [29]: (1) questioning (formulate investigable questions
for IBL), (2) data analysis (analyze the data to identify patterns), (3) hypoth-
esis iteration (generate and refine hypotheses based on insights gained in IBL),
(4) pattern interpretation (make sense of collected patterns in the subject con-
text and synthesize new knowledge), (5) conclusion (draw and justify inferences
and conclusions).

3.2 Design Features

F1. Modular ML/SI blocks initiate pre-designed ML and IBL components
(Fig. 1.a1). When teachers drag and drop them into the main workspace with a
side-by-side layout (Fig. 1.a2), the corresponding ML methods or IBL behaviors
are added to the learning activity.

ML components (Fig. 1 left) enable the application of ML techniques. For
instance, “Build Predictor” and “Make a Prediction” (Fig. 1.b) enable predic-
tive analysis with KNN and the evaluation of prediction accuracy; “Automatic
Clustering” applies K-means clustering to analyze input data and visually repre-
sent the resulting clusters (Fig. 2); “Manual Clustering” allows users to explore
patterns within a subset by manually overlaying data visualizations to compare
similarities using superposition comparative visualization [18]. This enhances
transparency and hands-on manipulation for students to grasp the basics of clus-
tering, helping them understand clustering algorithms when encountered [12].
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Fig. 1. (a1) Draggable blocks to initiate ML and IBL components; (a2) side-by-side
layout for designing ML (e.g., build predictor) and IBL (e.g., hypothesis generation)
steps; (b) a teacher-designed activity: (b1) select an attribute to predict with KNN;
(b2) adjust the parameter for the number of neighbors; (b3&b4) select an unknown
data point to predict, (b5) evaluate KNN output by comparing with ground truth.

SI components (Fig. 1 right) support established IBL behaviors [29] (Sec-
tion 3.1). Teachers add “Questioning” or “Hypothesis Generation”, customize in-
structional text, and provide answers from their students’ perspective (Fig. 1.b6
& 1.b7) based on the paired ML component (Fig. 1.b left).

With “Data Analysis” (Fig. 1.b8), teachers document the ML-revealed pat-
terns. Based on cluster analysis and predictive analysis in data science [3], seven
potential patterns can be identified using K-means clustering and KNN: (1)
similarities and differences between two data points, (2) intra-cluster similarities
and variations, (3) inter-cluster comparisons, (4) centroid, (5) outlier analysis,
(6) data range (minimum and maximum values), (7) prediction results compared
to ground truth. The identification and analysis of the aforementioned patterns
align with CCSS [15] for Mathematics in the U.S., particularly in reasoning ab-
stractly and quantitatively, constructing viable arguments, and modeling with
mathematics. This extends the CCSS as the high school math curriculum in the
U.S. typically only covers patterns of association in bivariate data and the shapes
of two- and three-dimensional data. With “Conclusion”, teachers can view a list
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of automatically tracked findings from “Data Analysis” (Fig. 1.b9) and compare
them to their existing hypothesis (Fig. 1.b10).

F2. Side-by-side ML-IBL layout showcases the final design’s visual (Fig. 1.b),
which matches common templates for secondary teachers to construct lesson
plans. Teachers can add, reorder, and remove individual or pairs of ML and IBL
components. They can experiment with various combinations for the learning
design, evaluating how to interact with the ML components to best support a
specific IBL behavior, or identifying which IBL behaviors students are likely to
exhibit when using a particular ML technique.

F3. Customizable ML components enable teachers to input different
data, ranging from the entire dataset to a cluster formed by a previous clustering
component, or a manually selected subset (Fig. 2). For instance, a teacher might
save the clusters generated by K-means clustering (Fig. 2.5) and re-apply K-
means clustering on a specific cluster. This supports the incremental construction
of ML-related data practices throughout the iterative IBL process.

Fig. 2. (1) Update input for K-means clustering; (2) select and view the entire “social
media use and emotions” dataset [5] as the input; (3) select K = 3 for the number of
clusters; (4) visualize the clustering results with parallel coordinates; (5) click to save
the newly-generated clusters; the new clusters saved are added to the available inputs.

4 Research Method

4.1 Participants

Through education-related mailing lists and teacher education program coor-
dinators, we recruited 14 secondary school teachers (Table 2). The study was
approved by the Institutional Research Subjects Review Board (Case Number:
STUDY00003947).

4.2 Study Procedure and Data Collection

Secondary school teachers use ML4Inq to co-design ML-IBL activities with ML
experts. We chose co-design approach [30], for three reasons:
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Table 2. Demographics and teaching backgrounds of teachers.

PID Gender Types of Schools Grade(s) Subject(s) Years

P1 Female Public schools 9-12th Algebra and AP Statistics 16
P2 Female Public schools 9-12th Computer Science, Business Tech-

nology
5

P3 Male Public schools 9-12th Math, Science 8
P4 Female Public schools 9-12th Biology (Science) 7
P5 Female Public schools 7-9th, 12th 7th grade Life Science. 8th grade

Accelerated Living Environment,
9th grade Living Environment, 12
grade AP Biology

5

P6 Female Public schools 9th World History, writing 31
P7 Male Private schools 6-9th Computer Science, Robotics, Pre-

Algebra
27

P8 Female Public schools 6, 8-12th Biology, General Science, Earth
Science

15

P9 Female Public schools K-5th, 9-10th Science, Computer Science 12
P10 Male Public, Charter schools 5-8th Engineering, Computer Science 9
P11 Male Public schools 9-12th AP Physics, Physics, Mathemat-

ics, Computer Science, Chemistry,
Earth Science

28

P12 Female Public, Private, Charter schools 5-12th Computer Science, Computational
Thinking

23

P13 Male Public, Private, Charter schools,
Outreach programs.

6-12th Earth Science, Chemistry, Engi-
neering, Computer Science, Data
Science

5

P14 Male Public, Private, Charter schools K-12th Science, STEM/Maker Education 20

(1) Teachers’ expertise is essential due to the lack of pedagogical theories on
integrating ML methods into K-12 IBL [33];

(2) Despite specific training and technology enhancement, teachers often limit
their instruction designs to surface-level data interpretation [6] and under-
estimate their ability to teach ML [25];

(3) Co-designing with teachers can promote curriculum innovation, support class-
room technology integration, enhance teacher ownership and sustainability
of materials, and foster teacher learning [30].

The study consists of three one-hour sessions and is conducted online via Zoom.
Session 1: Teacher-as-Learner. Before this session, teachers filled out the

pre-study survey collecting demographic information and teaching backgrounds.
During this session, a researcher guided teachers to go through and get fa-

miliar with each component in ML4Inq, including (1) ML components with data
visualization, (3) IBL components, and (4) the design flow in ML4Inq. In the
end, the teacher and the researcher discussed which datasets the teacher wished
to use for the design sessions. A minimum one-day interval is scheduled for the
researcher or the teacher to acquire new datasets. The researcher pre-processed
data by eliminating data points with missing values and non-numeric features,
ensuring compatibility with ML4Inq.

Session 2 & 3: Teacher-as-Designer. In the two design sessions, teach-
ers used ML4Inq to create ML-IBL activities using the datasets of their choice.
They first define high-level learning objectives, explore the data using ML com-
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ponents, design the IBL instructions for individual steps, and conduct the specific
IBL behaviors from their students’ perspective. A researcher and an ML expert
provided facilitation when needed. Upon completion, teachers were asked to re-
view their process and contemplate modifications to the learning activity they
created. We collected screen recordings and the log of teachers’ text input and
interaction with ML4Inq.

4.3 Measures and Data Analysis

To investigate how secondary school teachers incorporate ML into curriculum-
aligned IBL activities using ML4Inq, we first compared the learning goals with
curriculum standards by categorizing the teacher-designed ML-IBL activities
based on the disciplines outlined in U.S. K-12 curriculum standards, including
Next Generation Science Standards (NGSS) [9] and standards set by the National
Council for the Social Studies (NCSS) [27]. We also measured the frequency of
dataset subjects.

To analyze how ML and IBL were integrated in teachers’ design, we measured
the frequency of ML-revealed data patterns applied by teachers and examined
the occurrence of the immediate subsequent IBL component that follows various
data patterns to gain insights into their specific usage.

5 Results

5.1 Diversity of curriculum-aligned data topics

14 teachers created 26 learning activities. Among the 21 different datasets used
by teachers, two were provided by teachers; 17 were found and retrieved by re-
searchers based on the topics or disciplines requested by teachers; two were cho-
sen by teachers from our example datasets. The disciplines ranged from science
(N = 10) to social studies (N = 11) (Table 3). In the science-related datasets, we
identified seven out of 13 Disciplinary Core Ideas in NGSS for the U.S. STEM
education [9], which encompass four key disciplines: (1) Physical Sciences, (2)
Life Sciences, (3) Earth and Space Sciences, and (4) Engineering, Technology,
and Applications of Science. In the rest datasets, all five disciplines outlined in
the U.S. social study standards [27] are identified: History, Civic and Govern-
ment, Geography, Economics, and Psychology. Some are interdisciplinary, such
as “Social Complexity in Ancient Civilizations,” which integrates data attributes
from History, Civic and Government, and Geography.

5.2 Distribution and usage of ML-revealed patterns for IBL

Teachers applied ML algorithms to discover a diverse range of patterns (Table 4)
and used them to promote students’ IBL behaviors (Table 5-7).

(1) Intra-cluster similarities, inter-cluster differences, and centroids. All of
the 26 ML-IBL activities involve interpreting correlations between attributes by
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Table 3. Dataset discipline used in teacher-designed ML-IBL activities.

Discipline Dataset Subject

Environmental Science (N =
6)

Air Composition, Air Quality, Forest Coverage, Water
Quality, Climate Change, Weather Pattern

Biology and Ecology (N = 4) Fishery, Blueberry Yield, Ocean Animals, Alien Rose,
Bacteria Growth

Social Studies: History, Geog-
raphy, Economics, Civics, Psy-
chology (N = 11)

Marvel Movie, Worldwide Country Development, So-
cial Complexity in Ancient Civilization, CS Career, AI
Development, Social Media Usage and Emotion, Stu-
dent Stress, Teen Well-being, Worldwide Cost of Liv-
ing, Adult Income, Baseball Game Logs

Table 4. The distribution of patterns covered by teacher-designed ML-IBL activities.

Pattern Number of ML-IBL activities

Intra-cluster similarity 26
Inter-cluster comparison 26
Centroid 18
Intra-cluster variation 22
Outlier 7
Comparison of the prediction and the ground truth 18
Inter-cluster comparison of neighboring data points 3

analyzing intra-cluster similarities and inter-cluster differences. 18 of them in-
troduced centroids for inter-cluster comparison. Such cluster analysis supported
hypothesis iteration in all activities. For instance, P5 identified a counterintuitive
pattern through inter-cluster comparison. She found that clone size negatively
impacted blueberry yield, searched for a research paper about the underlying
causes related to biodiversity, and used this as a learning opportunity for stu-
dents to discuss the importance of biodiversity. P5 found it very important for
students to interact with the real-world dataset and discover the patterns them-
selves could be more memorable. P13 and P14 utilized intra- and inter-cluster
patterns to identify that most data points have higher cs credits and discussed
how such data bias influenced the analysis.

(2) Analyzing variations in real-world data. 22 out of the 26 ML-IBL ac-
tivities guided students in identifying and interpreting variances. Four types of
applications of variance analysis in IBL are identified (see details in Table 5).

(3) Outlier analysis for further inquiry. Seven out of the 26 ML-IBL activities
utilized outliers revealed by ML methods to promote IBL, with three types of
IBL applications identified (see details in Table 6).

(4) Evaluation and interpretation of KNN outputs. Teachers used KNN in 18
activities. Three types of IBL applications are identified (see details in Table 7).

The analysis and interpretation of patterns (Table 5-7) align with the U.S.
CCSS for Mathematics [15], specifically with reasoning abstractly and quanti-
tatively, constructing viable arguments, and modeling with mathematics. ML-
supported data analysis practices extend beyond the typical high school math-
ematics curriculum, which generally focuses only on patterns of association in
bivariate data and the shapes of two- and three-dimensional data. The findings
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Table 5. Analyzing variations in real-world data (N = 22).

IBL applications Example

Use varying fea-
tures to evalu-
ate and refine hy-
potheses (N = 9)

An activity about students’ GPAs and course registration: (1) Hypothesis:
High CS GPA students have high math GPAs. (2) Cluster analysis: High
CS GPA students have varying math GPAs. (3) Conclusion: The finding
“high CS GPA students have varying math GPAs” rejects my hypothesis “high
CS GPA students have high math GPAs”.
An activity about blueberry yield : (1) Cluster analysis: There are large varia-
tions in bumble bee intensity for all the clusters with different levels of blueberry
yield. (2) Hypothesis: There is little correlation between bumble bee intensity
and blueberry yield. (3) New question: What are other attributes that could
be correlated with blueberry yield? (4) Hypothesis iteration and feature
selection: Select a few new data attributes based on the updated hypothesis.
(5) Predict with KNN to test hypothesis: Test the new set of attributes
to see if they can accurately predict blueberry yield.

Interpret in real-
world contexts
(N = 5)

An activity about CS career : Identified the same finding, and further interpreted
why high school CS GPA seems not to be strongly correlated with math GPA:
“HS Math mostly deals with procedure fluency and has little to do with logic
and abstraction. CS must do more with logic and abstraction.

Probe further
question-asking
with large vari-
ances (N = 4)

An activity about Marvel movies: (1) Cluster analysis: There is a large vari-
ance in the phases of Marvel movies with higher box office. (2) New question:
Why do the phases vary for Marvel movies with higher box office? (3) Up-
date input: Input a cluster with high box office and varying phases. (4) New
cluster analysis: Apply K-means clustering on the new input.

Discuss the tol-
erance for vari-
ances (N = 4)

(1) Variance analysis: compare the variance in fish stock with the data range.
(2) Cluster analysis: Tolerate variances to interpret the shared similarity.

Table 6. Outlier analysis for further inquiry (N = 7).

IBL applications Example

Validate outliers
with clustering
(N = 4)

(1) Conduct clustering multiple times and analyze that the data points don’t
fit any clusters generated. (2) Interpret the potential causes of the outliers.
For example, “this is a country with resources significantly higher than the rest
countries for AI development, and thus, has an AI index outlier”.

Multiple IBL
cycles follow
up the outlier
analysis (N = 3)

An activity about mental health: (1) Cluster analysis: Some outliers in a high-
workload cluster have low stress and low workload. (2) New questions: Why
do some students in low-stress and high-workload clusters have low workloads?
(3) Hypothesis: These students with low workloads but high stress may have
bad living environments, such as lower safety and lower living condition indexes.
(4) Feature selection: Add new features “safety” and “living condition” to
build ML algorithms. (5) New cluster analysis: Apply K-means clustering
with the new set of features and analyze the clusters. (6) Conclusion: Students
with low workloads but high stress have low safety and low living conditions.

Cluster the out-
lier cluster for
further investiga-
tion and explana-
tions (N = 3)

An activity about social media use: (1) Hypothesis: The cluster receiving the
most likes has the most positive emotions. (2) Cluster analysis: Identify an
outlier cluster with both the most positive and the most negative emotions. (3)
Update input: Input the cluster with the outliers. (4) New cluster anal-
ysis: Apply K-means clustering on the new input. (5) Conclusion: Extreme
emotions are related to extreme engagement with social media (i.e., receiving
the most likes, posting more frequently, sending the most messages).
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Table 7. Evaluation and interpretation of KNN outputs (N = 18).

IBL applications Example

Predict multiple
unknown data
points (N = 13)

Analyze the prediction accuracy to determine if the feature predicted is highly
correlated with the independent features selected. If the accuracy is low for
many trials of unknown data points, students can experiment by updating the
feature selection to refine the KNN predictor.

Alternate target
features for pre-
diction (N = 5)

(1) KNN interpretation: Compare the predicted daily stress with the ground
truth. (2) Feature selection: Select another set of features to predict well-
being scores. (3) KNN interpretation.

Interpret group
patterns of the
k-nearest neigh-
bors (N = 3)

An activity about ecological field sites: (1) Parameter adjustment: Select
k values to predict field sites’ livability based on the neighboring data points.
(2) KNN: Predict an unknown data point with a high canopy height, and
then predict a low-canopy data point. Data analysis: Compare the two sets
of neighboring data points and their livability.

highlight teaching opportunities in science subjects to introduce advanced (1)
statistical concepts (e.g., outliers, variance, and centroids) and (2) data practices
(e.g., data collection and curation, evaluating the statistical power of various
types of evidence, and interpreting findings with subject-specific expertise).

6 Discussion and Future Work

Design Implications for Supporting Advanced ML Practices through
Novice-Centric Tools. Beyond the K-12 education context, our findings pro-
vide broader insights into designing computer-supported experiences for novices
to build ML expertise incrementally through hands-on practices.

Customizable ML for incremental sensemaking in ML-IBL. The data ana-
lyst’s sensemaking process [11], which involves collecting and organizing data to
generate knowledge outputs, offers valuable perspectives on how customizable
ML practices can support hypothesis iteration across different inquiry phases.
The sensemaking process contains four major transitions, two for information
foraging: (1) filter relevant data, (2) search for a larger set of data, and two
for sensemaking: (3) hypothesize based on the relevant data, (4) test hypothesis
with the relevant data. By looking into how teachers connected ML-revealed pat-
terns with IBL, we identified that conducting clustering and KNN can be used
to filter larger data to relevant subsets and reveal patterns for hypothesizing.
ML customization practices, including updating input, parameter adjustment,
and feature selection, can support hypothesis testing or enable more efficient
searching of a larger dataset. These ML-IBL connections represent incremental
constructions of ML and capture ML’s finer-grained roles within higher-level IBL
phases [29]: filtering, hypothesizing, testing, and searching. With the advances
in generative AI, we can extend the sensemaking roles offered by classic ML
algorithms to cover more capabilities offered by AI [38].

Modular systems have been recognized in HCI as effective for fostering flex-
ibility and reusability in diverse contexts [26]. For instance, end-user program-
ming environments such as Scratch and Blockly demonstrate how modular-
ity enables users to focus on creativity and problem-solving without requiring
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advanced technical knowledge [31]. Modular ML components break tasks into
smaller, manageable steps, reducing cognitive load and building confidence [36],
allowing novices to experiment with ML and interpret the output immediately.
However, we did observe an imbalanced usage of different ML components. For
example, “Manual Clustering” and “Update Input” rarely appeared, even though
they encourage deeper engagement by allowing teachers to group data based
on their interpretations and conduct follow-up analyses. This underscores the
importance of balancing usability with cognitive demand in tool design. Prior
research shows that users often prefer automated over manual features when
faced with time constraints or steep learning curves [28, 22]. Thus, teachers may
have avoided them due to the perceived complexity or lack of immediate util-
ity [20] compared to using the default input and automatic clustering. Future
iterations could balance usability with learnability and cognitive demand [2] with
contextual hints or example demonstrations.

Limitations and Future Work.While the authoring tool presents a promis-
ing approach for integrating ML into K-12 education, several limitations and
the corresponding next steps should be acknowledged. First, the tool in its cur-
rent version relies heavily on pre-designed modular ML components, which may
limit flexibility for diverse educational scenarios. Second, the limited time for co-
design constrained the coverage of subject topics, ML-IBL design possibilities,
and thorough iterations to refine details. Third, there is no comparative study
for teachers to design similar activities with existing conventional tools under
the guidance of ML experts. We plan to conduct deeper analyses of teachers’
decision-making processes and evaluate the ML-IBL activities with students. In-
sights from existing and future analyses on the interplays between ML practices
and IBL behaviors could inform new features to enhance ML4Inq’s capabilities,
including a broader range of ML techniques and intelligent scaffolding to provide
personalized support to users.

7 Conclusion

This work tackles the challenge K-12 teachers face in integrating ML into the
curriculum due to limited preparation in statistics and ML. We created ML4Inq
for teachers to customize ML and IBL components to design curriculum-aligned
ML-supported IBL in their classrooms. Our study reveals how teachers applied
ML practices and ML-revealed patterns to foster meaningful IBL in students.
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