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A B S T R A C T

AI recommendations shape our daily decisions and our young generation is no exception. The convenience of
navigating personalized content comes with the notorious ‘‘filter bubble’’ effect, which can reduce exposure
to diverse options and opinions. Children are particularly vulnerable to this due to their limited AI literacy
and critical thinking skills. In this study, we explore how to engage children as co-designers to create
child-centered experiences for learning AI concepts related to the filter bubble. Leveraging embodied and
analogical learning theories, we co-designed an Augmented Reality (AR) application, BeeTrap, with children
from underrepresented backgrounds in STEM. BeeTrap not only raises awareness of filter bubbles but also
empowers children to understand recommendation system mechanisms. Our contributions include (1) insights
into child-centered AI learning using embodied metaphors and analogies as educational representations of
AI concepts; and (2) implications for enhancing children’s understanding of AI concepts through co-design
processes.

1. Introduction

Children growing up in the Artificial Intelligence (AI) age are digital
natives with access to AI-recommended information from a very young
age. Recommendation systems are the ubiquitous AI technologies that
help individuals navigate the ocean of information that matches their
interests. The convenience of personalized recommendations comes at a
cost that people often lose sight of — isolating individuals from diverse
choices and opinions, or the so-called ‘‘filter bubble’’ (Pariser, 2011).
Filter bubbles may heavily influence children, from what books to read,
and who to befriend on social media, to future education and career
opportunities. Imagine a middle schooler who often receives news of
NBA players on social media just because of his demographic and
friend circles. That student may be ‘‘trapped’’ in the idea of becoming
a professional basketball player even though he is also interested in
art and science. Children are particularly vulnerable to persuasion
from recommendation systems, not only due to their immature critical
thinking skills and impulse inhibition (Radesky et al., 2020), but also
their tendency to overtrust AI technologies, especially when perceived
as an intelligent agent (Druga et al., 2017; Long and Magerko, 2020a).

Daily interactions with AI recommendations, however, do not neces-
sarily help children grasp an understanding of related literacy (Pangrazio
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and Cardozo-Gaibisso, 2021), let alone develop the capability of mak-
ing informed algorithmic decisions (Swart, 2021). Although it is needed
for children to understand the impact of specific AI ethical issues (Garrett
et al., 2020b; Wang et al., 2023a), research shows that young students
lack awareness and reflection of intelligent technologies’ real-world
impact (Schaper et al., 2022; Ito et al., 2023; Lee et al., 2023). To
develop a meaningful understanding of such critical AI literacy that
can be transferred to personal life context, children must be computa-
tionally empowered by learning the underlying AI mechanism (Hitron
et al., 2019; Kaspersen et al., 2021b). Being less competent to cope with
complex online life confirms the urgency of extending children’s critical
algorithmic literacy (Livingstone, 2018). Uncovering the AI black box
can also increase children’s self-efficacy toward AI and develop their
capabilities to better utilize AI (Druga, 2018; Kajiwara et al., 2023).
Therefore, to make informed and empowered actions in the era of AI,
children need to be equipped with major AI literacy around the impact,
inner workings, and mitigation strategies of the filter bubble (Sulmont
et al., 2019; Schaper et al., 2023). This may further prepare the young
generation to meet a growing demand for AI-related computational
skills (Druga et al., 2019a; Ng et al., 2021; Zhou et al., 2020) and
inspire the next generation of AI researchers and developers (Touretzky
et al., 2019).
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Research shows that novice learners intuitively develop datafied
or metaphorical representations to embody AI recommendation sys-
tems (Alvarado et al., 2021). This and other existing research (Long and
Magerko, 2020b) suggest a promising direction of connecting embodied
metaphors with abstract concepts around AI recommendation systems
to facilitate a smooth transition from novices’ prior high-level under-
standing to accurate and in-depth AI literacy. Embodied metaphors
refer to how abstract concepts connect to our bodily experiences,
often through unconscious forms (Antle et al., 2009). Researchers have
investigated effective embodied experiences for AI learning, includ-
ing (1) students’ physical enactment as data and algorithms (Druga
et al., 2019b; Heinze et al., 2010; Sulmont et al., 2019), (2) data
collection and evaluation for AI training through learners’ gestures
and bodily movements (Zimmermann-Niefield et al., 2019, 2020), (3)
direct manipulation of tangible representation of AI models and data
physicalization (De Raffaele et al., 2018; Kim and Shim, 2022a), and
(4) interaction with embodied agents promoting playful bodily experi-
ences (Druga et al., 2017; Jeong et al., 2015). Despite these efforts,
research gaps remain in (1) developing more specific mappings be-
tween embodied metaphors and individual AI concepts and (2) aligning
the embodied metaphors with children’s identities, personal interests,
and cultural backgrounds (Long and Magerko, 2020b). Such alignment
could especially benefit the underrepresented groups (Eaton, 2008).
Some recent research sheds light on a potential solution to establish
the connection of AI learning with learners’ backgrounds — integrating
analogical learning with embodied learning (Dai et al., 2023).

Therefore, our work aims to design embodied metaphors and analo-
gies to represent AI concepts around the inner workings and ethical
issues of recommendation systems. Through co-design with children,
we explore the design of child-centered AI learning experiences that
incorporate children’s interests. However, without sufficient knowledge
of AI, the embodied representations co-designed by novice users remain
high-level and lack the underlying AI mechanisms (Alvarado et al.,
2021). With children being unfamiliar with both the target learning
objectives of AI literacy and the theories of embodied & analogical
learning, it could be very challenging to involve young learners in the
co-design process to probe their authentic preferences and needs in the
learning design.

To tackle the challenges, we created a baseline design of Bee-
Trap (Zhou et al., 2024), a novel Augmented Reality (AR) application,
by co-designing with AI experts. BeeTrap aims to provide a playful,
embodied, and analogical learning experience for children to grasp
concepts around AI recommendation systems and filter bubbles (Gong
et al., 2024). Built upon the iterated design of BeeTrap, we conducted
two co-design workshops with 11 high school students and nine middle
school students from underrepresented backgrounds in STEM. Our
co-design study investigates three critical research questions:

RQ1 What are children’s preferences for analogical and embodied
representations that concretize AI concepts around the filter
bubble in familiar science subject areas?

RQ2 What new analogical and embodied representations do children
create through co-design and what are the underlying learners’
needs?

RQ3 How does engaging as co-design partners impact children’s learn-
ing experiences of target AI concepts and their potential to
expand their understanding?

There are two main contributions made by this work:

1. This work provides design insights for child-centered AI learning
experiences based on: (1) children’s preferences for embodied
metaphors and analogies as educational representations of AI
concepts, (2) children’s new creations that bridge gaps in the
original representation design, and (3) enhancements in social
interactions, gamification, and the incorporation of children’s
interests.

2. Our findings highlight the potential of co-design in helping
young learners deepen their understanding of newly acquired
AI knowledge, ask more insightful questions about AI, and even
develop an initial grasp of advanced AI concepts beyond the
original learning objectives.

2. Related work

2.1. Teaching children about AI recommendation systems

Despite the importance and challenges of teaching children about
filter bubbles and related inner workings, limited technologies have
been designed (Lee et al., 2023; Schaper et al., 2023). To explore
how informal art exhibitions can support learners’ critical thinking
over ethical aspects of AI, researchers have designed art exhibitions
to provide youth with artistic first-person experiences of both the
positive and negative impacts related to AI recommendations (Lee
et al., 2023). Workshops are also developed for children to redesign
YouTube’s recommendation system by identifying different stakehold-
ers (Ali et al., 2019; DiPaola et al., 2020), for teenage girls to consider
how existing and future AI recommendations can impact challenges
in their lives (Solyst et al., 2022), and for children to learn about
online datafication and coping mechanisms (Wang et al., 2023b). Re-
searchers have also created structured classroom curricula to deliver
AI-related ethical knowledge (Garrett et al., 2020a). Existing research
recommends teaching kids about AI by (1) guiding them to reflect
upon real-world ethical dilemmas between the convenient personalized
experience and the loss of control and diversity in AI recommendation
systems and (2) empowering them to take action to tackle the filter
bubble (Schaper et al., 2023).

Most research touches on developing a conceptual understanding
of the ethical concern, leaving a gap in how to design educational
tools for young learners to investigate the inner workings causing
filter bubbles and its potential mitigation strategy. To fill the gap
in unveiling the black box underlying filter bubbles, we designed an
educational application to teach children about AI concepts centered
around filter bubbles, AI recommendation systems’ inner workings, and
diversification as a mitigation strategy.

2.2. Embodied learning for AI education

Embodied learning can develop a deeper comprehension of the
material (Macedonia, 2019), by promoting cognitive functions such
as attention, memory, and problem-solving through bodily experi-
ences (Kiefer and Trumpp, 2012; Shapiro, 2014). Existing embodied
learning research has investigated supporting high-dimensional data
analytical process by inviting students to position in a physical space
representing a 2D projection (Bilstrup et al., 2022; Chen et al., 2018)
and by distributing the demanding cognitive load in 3D spatial immer-
sive environments for better sense-making of complex data (Ens et al.,
2022). Researchers have explored how concrete 3D models can reify
multidimensional data (Kim and Shim, 2022b), how body gestures can
support data collection, and other steps in the pipeline of AI model
training (Carney et al., 2020; Long et al., 2021a; Zimmermann-Niefield
et al., 2019; Kaspersen et al., 2021a), and how tangible user inter-
face elements and spatial metaphors can embody abstract components
involved in the neural network (De Raffaele et al., 2018), semantic
networks, and the feature-based machine learning algorithm (Long
et al., 2021c).

AR is a powerful embodied interface that allows learners to phys-
ically enact an abstract concept and enhance understanding (Radu,
2014). Novice learners find it intuitive to perceive the experience of be-
ing trapped by similar data and require the design of recommendation
systems to demonstrate how they are built over iterations (Alvarado
et al., 2021). This study used AR to create embodied metaphors for
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abstract concepts centered around the impact, inner workings, and mit-
igation strategy of filter bubbles. Existing research in math education
shows that physical distance and walking steps can enhance children’s
mathematical thinking (Tran et al., 2017), which is one of the major
learning barriers for young students to develop AI literacy (Zhou et al.,
2020; Druga et al., 2019a; Kahn et al., 2018).

2.3. Analogical learning for AI education

Analogical learning is a cognitive process in which people connect
concepts in a familiar source domain and concepts in an unfamiliar
target domain for learning (Clement, 2013; Gentner and Smith, 2013).
An existing work used water flow as an analogy for electricity to create
a more accessible experiment space with electricity building blocks
augmented by virtual water flow (Kreienbühl et al., 2020). Analogical
learning may increase student engagement and motivation in activities
through students’ closeness with source domains (Thiele and Treagust,
1994; Schaper et al., 2022). Furthermore, analogies are often related
to the physical world and concrete representations. This implies the
potential for combining with embodied interaction (Dai et al., 2023) in
an AR learning environment.

Analogies are commonly used to aid students’ conceptual under-
standing, but more research is needed to explore how analogies can
help young learners grasp abstract AI concepts. Existing work has
proposed using human intelligence as an analogy for machine intel-
ligence through role-play and embodied cognition (Dai et al., 2023;
Druga et al., 2019a; Zhou et al., 2020). However, equating human
thinking with computer processing may reinforce an anthropomor-
phic view of AI, potentially leading to misconceptions and hindering
learning (Sulmont et al., 2019; Mertala et al., 2022). To address this,
this work investigated how analogies from K-12 science topics can
support AI learning. K-12 science topics may provide a shared foun-
dation for analogical reasoning, benefiting diverse learners (Baron
and Sternberg, 1987; Lee et al., 2023; Matthee and Turpin, 2019).
Young learners naturally use analogies and metaphors in scientific
discourse (Kesner Baruch et al., 2016). We chose bee pollination, a
common K-12 science topic (States, 2013), as the base domain for
analogies in the BeeTrap learning experience.

2.4. Co-design with kids

The Interaction Design and Children (IDC) and co-design com-
munities have developed various techniques for co-designing with
children, including fictional inquiry (Dindler and Iversen, 2007; Hiniker
et al., 2017), big papers (Guha et al., 2004), bags-of-stuff (Yip et al.,
2013), comicboarding (Hiniker et al., 2017; Moraveji et al., 2007),
stickies (Yip et al., 2013; Christensen and Abildgaard, 2021), ob-
structed theater (Read et al., 2010; Walsh et al., 2013), mission from
mars (Dindler et al., 2005), layered elaboration (Walsh et al., 2010),
KidReporter (Bekker et al., 2003), paper prototyping (Slegers and
Donoso, 2012), storyboarding (Truong et al., 2006), and Stop Motion
Studio (Sanoubari et al., 2021). These techniques aim to make the de-
sign process engaging and enjoyable. They differ in partner experience,
accommodation needs, design space, design maturity, cost, portability,
technology level, and physical interaction (Walsh et al., 2013).

During the co-design with children, a wide range of children’s roles
can be considered (Iversen et al., 2017). For example, when researchers
seek support for future technology design and a better understanding
of children’s learning process, children play the role of a user or a
tester to be observed and tested during the participatory process. To
involve children’s voices directly in the design process, researchers
invite children as design partners in various design sessions with a
shared goal of designing new technology. In this study, we engaged
young students as testers, informants, and design partners (Famaye
et al., 2024; Walsh et al., 2013). Initially, we evaluated and expanded
upon a baseline design—an initial set of analogical and embodied

representations created by researchers—using input from middle and
high school students. As testers, students interacted with technology
prototypes and provided direct feedback. In the role of informants, they
actively participated in structured discussions to offer design insights
through collaborative dialog. Finally, as design partners, students con-
tributed their creative ideas for improving the technology, developing
new elements through material crafting and other co-design activities.

Given (1) students’ lack of prior experience with co-design practices,
(2) the relatively constrained design space defined by the baseline
design, (3) the inclusion of advanced technical concepts such as AI
recommendations, and (4) the possibility that children from underrep-
resented STEM backgrounds may be unfamiliar with AR technology, we
selected two co-design techniques: layered elaboration (Walsh et al.,
2010) and storyboarding (Truong et al., 2006). Layered elaboration
provides a structured approach for iterative design within a defined
design space, allowing participants to build on existing ideas. Story-
boarding situates problems and solutions in context, making complex
concepts more accessible to novice designers. It is also particularly
suited to design phases where a baseline design has already been
established.

3. BeeTrap: The baseline design for co-design with children

3.1. Target learning objectives

BeeTrap (Zhou et al., 2024) focuses on three learning goals: (1)
comprehending the filter bubble effect, (2) understanding the mech-
anisms behind filter bubbles in AI recommendations, and (3) using a
diversification algorithm to break filter bubbles. The learning goals are
based on content-based recommendation systems, which suggest items
based on features that match user profiles (Aggarwal, 2016b; Pazzani
and Billsus, 2007; Ricci et al., 2015).

First, the filter bubble is an ethical concern where users are pre-
sented with content that closely mirrors their previous selections (Gao
et al., 2022). This results in decreased information diversity and lim-
ited user choices within recommendation systems. Second, the inner
workings of content-based recommendation systems that cause filter
bubbles are explained. This involves tracking user selections, matching
user profiles with available items, ranking these items based on their
similarity to the user profile, and recommending the highest-ranked
items (Aggarwal, 2016a; Jannach et al., 2010; Lu et al., 2015; Pazzani
and Billsus, 2007). Third, a diversification algorithm mitigates filter
bubbles by expanding the ranking list of items and re-ranking them
based on diversity (Kunaver and Požrl, 2017; Ziegler et al., 2005).
This diversity can be measured as the average distance between item
pairs (Premchaiswadi et al., 2013), resulting in a more varied set of
recommendations.

3.2. Iterative design process

Our design methodology is rooted in design thinking principles
(Liedtka, 2018), focusing on iterative development and evaluation. In
the initial phase, we collaborated with AI experts to brainstorm ideas,
which led to the creation of BeeTrap V1. This version incorporated
analogies such as a garden, flowers, bees, and an environmental sci-
entist, along with the NEAR-FAR embodied metaphor (Hurtienne and
Israel, 2007).

Next, we carried out a proof-of-concept evaluation of BeeTrap V1
with middle-school students and a focus group interview with K-12
science teachers. This phase began with participants engaging with
BeeTrap V1 to understand the analogies, metaphors, and AI concepts
involved in BeeTrap. The insights gained from this stage informed the
improvements in BeeTrap V2, including the addition of new analogies
such as a beehive, flower buds, and pollen. Section 3.3 introduces
design details.
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Fig. 1. (A) AR interfaces and (B) third-person view stop-motion video demonstrating the representations of the user profile.

3.3. Major analogies and embodied metaphors in BeeTrap baseline design

BeeTrap has three sets of analogies and metaphors, representing the
user profile in AI recommendation systems, similarity-based ranking to
generate recommendations, and the diversification algorithm to break
filter bubbles.

The user profile in a content-based recommendation system uses the
aggregated vector of user-selected items. The beehive that contains
pollen from pollinated flowers serves as the analogical representation
of the user profile; the beehive moves to the center point of locations
where pollinated flowers are projected, which serves as the embodied
representation of how the user profile is updated based on the items
selected by the target user (Fig. 1).

Similarity-based ranking identifies items most similar to the user
profile (Pazzani and Billsus, 2007). The pollen circle size is an em-
bodied representation of the range of similarity between the newly
recommended items and the user profile (Fig. 2). For example, a
smaller pollen circle represents recommending items that share higher
similarity with the aggregated vector of the user profile. The set of
flowers around the beehive is an analogical representation of items
most similar to the user profile.

The diversification algorithm mitigates the filter bubble effect. It
mainly involves two steps: (1) enlarging the ranking range to in-
clude more diverse items for recommendation, and (2) ranking the
items based on diversity instead of similarity. There are two under-
lying embodied representations. First, enlarging the pollen circle rep-
resents enlarging the ranking range of items to include more diverse
items for consideration (Fig. 3). Second, switching from locating the
most clustered flowers to the sparsest flowers represents changing
from similarity-based ranking for recommendation to diversity-based
ranking (Fig. 4).

4. Research method: Co-design with children

4.1. Goals and methodology

To create more effective representations of AI concepts for learning,
this study aims to understand young learners’ perception of educational
analogical and embodied representations of target AI concepts and
their learning needs within the technology-supported learning expe-
rience (Kodama et al., 2017). Given the complexity of AI concepts,
traditional methods such as interviews and surveys may no longer be

Table 1
Basic demographic information of high school students in co-design workshop #1 (s1p1-
s1p11) and middle school students in co-design workshop #2 (s2p1-s2p9).

PID Gender Grade Race

s1p1 Female 12th White/Caucasian
s1p2 Female 11th Hispanic
s1p3 Female 11th Hispanic
s1p4 Female 11th Black or African American
s1p5 Male 11th Turkish
s1p6 Male 11th Asian/Pacific Islander
s1p7 Male 9th Hispanic
s1p8 Male 11th Asian/Pacific Islander
s1p9 Female 12th Black or African American
s1p10 Male 11th Hispanic
s1p11 Female 11th Black or African American
s2p1 Female 8th Black or African American
s2p2 Male 7th Black or African American
s2p3 Male 7th Black or African American
s2p4 Female 8th Black or African American
s2p5 Female 8th White+Black
s2p6 Female 6th Asian+Black
s2p7 Male 8th White+Black
s2p8 Male 10th Black or African American
s2p9 Male 10th Black or African American

sufficient to capture learners’ perceptions or provide as detailed and
insightful data as co-design techniques with children (Westcott and
Littleton, 2005; Woodward et al., 2018; Walsh et al., 2013; Yip et al.,
2019).

Existing co-design research of AI learning has engaged K-12 teachers
to integrate AI for their classrooms (Lin and Van Brummelen, 2021)
and family groups to communicate AI concepts through museum expe-
riences (Long et al., 2021b). There is a lack of involvement of children,
the major stakeholder, in the creation and iteration of AI learning
experiences (Sanusi et al., 2023; Yue et al., 2022).

Our study used co-design to empower children to evaluate, reflect
on, and express their abstract ideas about the embodied learning ex-
perience more tangibly and expressively. We applied two co-design
techniques: layered elaboration (Walsh et al., 2010) and storyboard-
ing (Truong et al., 2006).
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Fig. 2. (A) AR interfaces and (B) third-person view stop-motion video demonstrating the representations of similarity-based ranking in content-based recommendation systems.

Fig. 3. (A) AR interfaces and (B) third-person view stop-motion video demonstrating the representations of enlarging ranking range for diversification.

4.2. Participants

We recruited the first group of 11 students from a summer camp

for high school students with lower socioeconomic status from the

urban school district in upstate New York (Table 1 s1p1-s1p11). The

second group consisted of nine middle school students from a summer

camp in an ethnically and economically diverse urban school district in
upstate New York (Table 1 s2p1-s2p9). Before the study, each student

was informed about the procedure, acquired parental permission, and

signed an assent form. This study was approved by the Institutional

Review Board (IRB).

4.3. Study procedure

Prior work posits that children and novices may encounter chal-
lenges when expressing their thoughts, and proposes incorporating
additional organization into the process by promoting the generation
of ideas through incremental steps (Guha et al., 2004). Therefore, to
reduce participants’ cognitive load, we divided the sessions of experi-
encing existing designs and design activities into smaller portions of the
entire system design. With two different groups of participants, we con-
ducted two co-design workshops on-site during summer camps. Each
workshop contained three sessions (Table 2) with detailed procedures
described below.
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Fig. 4. (A) AR interfaces and (B) third-person view stop-motion video demonstrating the representations of diversity-based ranking for diversification.

4.3.1. Session 1: Children experience BeeTrap activities
The challenges in co-designing educational analogical and embod-

ied representations of AI concepts with children are two-fold. First,
children tend to have existing misconceptions and a significantly steep
learning curve associated with complex AI concepts (Hitron et al.,
2019; Kaspersen et al., 2021a; Kodama et al., 2017; Valero-Mora and
Ledesma, 2011; Chen et al., 2018). Second, young students may lack
digital literacy to use novel digital interfaces, such as AR technology, as
necessary design materials to afford analogical and embodied learning
experiences. To address these challenges, in the first session, we invited
students to experience three mobile-based AR learning activities that
use pre-designed analogical and embodied representations. The learn-
ing objectives of the three activities are to understand: (1) the filter
bubble effect; (2) the inner workings of content-based recommendation
systems; and (3) the basic diversification algorithm to mitigate the filter
bubble effect. More details about each activity are described as follows.

Filter bubble experience. Students started by learning how to navigate
the virtual garden using a tablet, to reduce a flower diversity score
seen in the top-left corner of the screen to below 800. As they took
on the roles of ‘‘bees’’, they decided which virtual flowers to pollinate,
focusing on attributes like color, petal size, and shape outlined in the
flower’s data vector. Students utilized a ‘‘time travel’’ function to revisit
previous states of the garden, observing the effects of their choices
across different stages.

Inner workings of a content-based recommendation system. Students went
through four rounds of pollination in the virtual garden. In the first
two rounds, they were guided to observe and vocalize their under-
standing of various design metaphors including the distance between
flowers, the characteristics of the flower buds, and the pollen circle.
In the subsequent two rounds, students answered the five on-screen
multiple-choice questions that probed their understanding of the rec-
ommendation mechanism. The questions, designed to appear twice,
encouraged students to think deeply about the representation and
mechanics of the recommendation system presented through the AR
garden.

Diversification to break filter bubbles. Students were tasked with in-
creasing the flower diversity score of the virtual garden. The task
was framed as an effort to break out of a ‘‘filter bubble’’ observed in
previous sessions. Students switched between two roles: one as a ‘‘bee’’
seeking diverse flowers, and the other as an ‘‘environmental scientist’’
tasked with encouraging a healthy ecosystem for the bee by achieving

a diverse garden. When roleplaying the scientist, students manipulated
the pollen circle size and controlled the flower growth distance (far
away from or close to the beehive). Then students moved close to
flowers to pollinate, with the choices directly affecting the garden’s
state. The session concluded once students raised the diversity score
above a set score over several trials.

Throughout Session 1, three researchers resided in two rooms to
assist students with the study procedure when requested. This session
lasted for about 40 min in total (Table 2(1)). It aims to prepare
students for co-design with both necessary AI literacy and experience of
mobile-based AR technology. In addition, the analogical and embodied
representations implemented in the mobile-based AR application serve
as a design baseline for students to comment on and create new designs
in Sessions 2 and 3.

4.3.2. Session 2: Children annotate the likes and dislikes of existing designs
through the adjusted layered elaboration

Layered elaboration (Walsh et al., 2010) uses transparent layers to
preserve the original design while facilitating iterative improvements
for paper-based prototyping. In this session, we adopted and adjusted
the method of layered elaboration to collect students’ likes and dislikes
of major embodied and analogical representations in BeeTrap.

Students first watched a stop-motion video clip filmed with Lego
blocks. The Lego blocks were arranged in individual frames of the
stop-motion video to demonstrate existing designs of analogical and
embodied representations. The stop-motion video aims to create a more
authentic and engaging third-person view of representatives involved in
(1) the filter bubble effect (Fig. 5.A), (2) AI recommendation algorithm
(Fig. 5.B), and (3) breaking the filter bubble with a diversification
algorithm (Fig. 5.C).

During the layered elaboration, students worked in small teams of
two to four, annotated what they liked and disliked about individual
representations in BeeTrap, and drew design improvements on a trans-
parent sheet placed over the design baseline (Fig. 6.1). Within each
team, students communicated their ideas, asked follow-up questions,
and built upon each other’s ideas. We adjusted the layered elaboration
technique for our research and design purposes by using the existing
analogical and embodied representations as the design baseline for stu-
dents to comment on, rather than asking students to create a new design
from scratch. This is due to the challenges mentioned in Section 4.1 for
children to co-design representations of abstract AI concepts.
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Table 2
The overview of the three-session study.

Session Activities

(1) Session 1 (a) Pre-survey; (b) BeeTrap learning activities: filter bubble experience, inner
workings of a content-based recommendation system, diversification to break
filter bubbles; (c) post-study interviews.

(2) Session 2 Annotating likes and dislikes through layered elaboration.
(3) Session 3 Co-designing new analogies and metaphors through storyboarding.

Fig. 5. Key frames from the stop-motion video clip that demonstrate major analogical representations in BeeTrap: (A) the filter bubble effect: after the bee pollinates a flower,
(1) the first new flower grows out; (2) the second new flower grows out; (3) the third new flower grows out. (B) the AI recommendation algorithm: after the bee pollinates a
flower, (1) flower buds appear on the ground; (2) the bud closest to the beehive grows into a new flower; (3) the bud second closest to the beehive grows into a new flower. (C)
breaking the filter bubble with a diversification algorithm: (1) a bee pollinates a flower; (2) the environmental scientist enlarges the pollen circle to rank more flower buds; (3) a
new flower farther from the beehive grows out and get pollinated by the bee.

Fig. 6. Processes and outcomes from co-designing through (1) the adjusted layered elaboration, through (2) storyboarding, and by using (3) Lego blocks.

Crafting materials include transparent sheets for annotation and
drawing, markers, sticky notes, and the printouts of four design base-
lines for user profile (Fig. 1.B), similarity-based ranking for content-
based recommendation systems (Fig. 2.B), ranking range of items for
recommendation (Fig. 3.B), and diversity-based ranking for mitigating
the filter bubble effect (Fig. 4.B).

4.3.3. Session 3: Co-design through storyboarding
Storyboarding (Truong et al., 2006) is a co-design technique where

the story of a system design is drawn onto large sheets of paper
to establish a timeline as well as the aesthetics of the system. This
technique puts problems and solutions in context and makes them
easier to understand. This method is effective in capturing diverse
perspectives, fostering creativity, and visually conveying complex ideas
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Fig. 7. Storyboards with blank spaces for children to create new representations of different AI concepts involved in AI recommendation systems’ inner workings and the filter
bubble.

or solutions. This session aims to refine prioritized design elements and
innovate new designs.

Students were introduced to the session’s objectives and given an
overview of the storyboarding process. Then they captured ideas and
visualized concepts by filling out blank spaces in the storyboards. The
blank spaces here demonstrated the design space for creating new
ideas. Students were organized into small groups to share ideas, ask
follow-up questions, and suggest new ideas to add on. Each group
was provided with paper, pens, markers, and print-outs of storyboards
to be filled out (Fig. 7). In the end, students finished drawing in
the storyboards to demonstrate their new design ideas of analogi-
cal and embodied representations, adding brief descriptions if needed
(Fig. 6.2). They could choose to demonstrate their ideas by using
Lego blocks instead of sketching (Fig. 6.3). Throughout the session, re-
searchers guided the process, ensuring that participants stayed focused
on the design objectives and that the environment remained conducive
to creativity and collaborative learning.

4.4. Data collection

In the co-design workshops, we gathered a diverse range of data
across various mediums for analysis. We photographed participant-
generated artifacts, such as annotations on existing designs, sketches
of new designs, written feedback on prototypes, and design artifacts
built with Lego blocks. We video and audio-recorded participants’
interactions to capture detailed insights from their design processes and
group discussions. One researcher transcribed the audio recordings by
using Rev, an online transcription service. Two researchers reviewed
the transcripts along with the video recordings for manual correction
and further analysis. Some dialogs were not captured due to inaudi-
bility, overlapping speech, and the logistical challenge caused by the
limited number of recorders among co-design tables. Nonetheless, the
visual data from the design artifacts served as a supplementary source,
compensating for gaps or unclear segments in the audio recordings.

4.5. Data analysis

Given the limited number of study participants, we steered clear of
quantitative comparisons and statistical analysis, recognizing that such
results would lack statistical significance. We focused on qualitative
analysis, which is more appropriate for exploring complex, nuanced
perspectives from co-design and gaining a deeper understanding of this
novel research field (Braun and Clarke, 2006).

We conducted a thematic analysis (Braun and Clarke, 2006) on
the transcripts of the video recordings of the co-design sessions and

the design artifacts to answer three research questions. For RQ1 and
RQ2, we analyzed students’ preferences for analogies and metaphors
of AI concepts and their design creations. Through line-by-line coding
of the transcripts and the analysis of visual and textual elements of the
artifacts, we extracted specific aspects of the analogies and metaphors
that students liked and disliked, as well as all the design improvements
and new design ideas they generated. For each design that children
commented on, two researchers independently coded the data and
grouped the codes into higher-level themes. Through regular meetings,
two researchers compared individual codes, discussed their emerging
themes, and resolved disagreements.

For RQ3, we focused on students’ understanding of the concepts
related to AI recommendation systems and the filter bubble effect.
Using the same thematic analysis approach, two researchers coded the
transcripts independently and discussed their annotations to reach a
consensus. A third researcher joined to further confirm and refine the
themes, ensuring that the themes were well-supported by the data and
accurately represented participants’ understanding of the concepts.

5. Results

5.1. RQ1. What are children’s preferences for analogical and embodied
representations that concretize AI concepts around the filter bubble in
familiar science subject areas?

This section elaborates on four themes in children’s likes and dis-
likes of the representations of AI concepts: (1) the interrelations be-
tween analogical & embodied representations are effective scaffoldings;
(2) children enjoy vibrant visualization and manipulative elements; (3)
the interrelations need more explicit representations; (4) mismatches
between science concepts and artificial concepts could cause confusion.

5.1.1. Likes: Children perceived analogical & embodied representations and
their interrelations as effective scaffolding

Besides the embodied metaphors regarding physical space (e.g.,
flower–flower distance, pollen circle size), 16 students found the inter-
relations among analogies as helpful representations scaffolding them
to recall and understand abstract AI concepts along with their inter-
relations. For example, the relationships among a pollinated flower,
pollen, and beehive, which are honey bees pollinating a flower, and the
flower’s pollen getting collected into the beehive, are explicitly visual-
ized in the analogical and embodied learning experience. This helped
students understand that a user selects an item in a recommendation
system, and then the user profile collects data on this user selection to
represent the preferences of this target user.
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5.1.2. Likes: Children enjoyed the vibrant representations and manipulative
tools that concretize abstract math concepts

All the children enjoyed the exaggerated experience of standing in
the clustered flowers that became increasingly similar, making the filter
bubble effect more expressive and impressive. Students found that only
by increasing flower diversity could they expand the flower-growing
areas in the BeeTrap garden. This embodied experience stimulated
students’ urge to break the filter bubble clearly and engagingly.

Children perceived the withered flowers far away from the pollinated flowers
as a powerful representation of the similarity-based ranking in content-based
recommendation systems. Built upon this analogical representation, one
student sketched their creative interpretation that the moving beehive
is the power source for flowers to grow in the garden, which causes
flowers far from the beehive to wither and die.

Children enjoyed roleplaying the analogical representations. Students an-
notated on existing designs that they liked roleplaying a bee and an
environmental scientist. Bee is an analogy of the user of a recom-
mendation system and environmental scientist is an analogy of an AI
engineer developing a diversification algorithm. Children shared that
such a combination of analogical representation of AI concepts and
roleplaying created a motivating, goal-driven, and immersive learning
experience.

5.1.3. Dislikes: Children requested more explicit representations of the in-
terrelations among analogies and embodied metaphors

Ten participants pointed out that, while working on solving prob-
lems in BeeTrap, some of the interrelations between analogies or em-
bodied metaphors were not explicit enough for them to immediately
apply. For example, students mentioned that they did not instantly
connect the flower bud, the authentic biology concept of what will grow
into new flowers, with items that are candidates for recommendation.
Some students did not successfully transfer the knowledge that physical
distance in the garden represents the data similarity/distance to a more
in-depth understanding that the bud-beehive distance represents the
item–user distance.

5.1.4. Dislikes: Children perceived mismatches in the mixture of authentic
science concepts and artificial concepts

Fourteen participants reported that the mixture of authentic and
artificial concepts was inconsistent with the real-world science context,
creating confusion that hindered their understanding of the correspond-
ing AI concepts. For example, the relationship between the artificially
moving beehive and the pollen circle, which is an artificial concept,
confused some students. A beehive does not move based on the loca-
tions of the pollinated flowers in the real-world garden and there is no
physical circle around a beehive. Some students mentioned that their
observation of the beehive moving toward the pollinated flowers made
them struggle to make sense of why the beehive was moving and how
exactly the beehive’s location was updated.

5.2. RQ2. What new analogical and embodied representations do children
create through co-design and what are the underlying learners’ needs?

This section introduces our findings that children’s new designs
(1) bridge the gaps caused by the mismatch between science concepts
and AI concepts and (2) enhance collaboration and competition for
gamification.

5.2.1. Bridging gaps in the embodied and analogical representations
First, children found a major gap lies between the artificial BeeTrap

objects and the authentic science context. We identified seventeen de-
sign ideas replacing the BeeTrap representations that did not align with
real-world gardens (Fig. 8). For example, eight new designs replaced
the artificially moving beehive, such as (1) a honey pot holds pollen
from the pollinated flowers (Fig. 8.1, 8.12); (2) a tree protects flower

buds in a certain range so that the protected buds can grow (Fig. 8.5);
(3) a tree holds the beehive with the branch; with different amounts of
water that the tree gets, its branches get longer or shorter to move the
beehive (Fig. 8.9, 8.10); (4) wind or a fan blows the pollen to change
the range of growing new flowers (Fig. 8.12, 8.15); (5) a rain circle
waters the flower buds to grow out (Fig. 8.9); (6) peer bees carry pollen
from the pollinated flower and fly to the beehive, which explicitly
represents the user profile’s data collection process (Fig. 8.6); (7) a sun
sheds light and provides energy for flower buds in a certain range to
grow (Fig. 8.4); (8) a vase that can hold the pollinated flowers directly.

Second, children identified gaps in the learning content that lack
explicit embodied or analogical representations. They creatively de-
signed representations to concretize more nuanced AI sub-concepts
underlying the existing AI concepts, such as in-depth mathematical
concepts in a recommendation algorithm and breaking down ‘‘user
profile update’’ into sub-concepts of ‘‘user selection’’, ‘‘data collection’’,
etc. We identified seven ideas that serve this purpose. For instance,
to demonstrate more details in the algorithmic step of deciding which
items to recommend, children designed a sun to replace the beehive.
The sun can provide different energy levels for buds to grow (Fig. 8.4).
This representation embodies the concept of weights in an AI algorithm
with different amounts of sunlight from the sun. Another example is
that some children added lines between beehive and flower buds to
visually represent and explain how flower buds get ranked by beehive-
bud distance. This design reveals more mathematical details in the
ranking formula. To step into one deeper layer of the diversification
algorithm, children also created a set of garden tools, including shovels,
sprinklers with different watering ranges, fertilizer, etc. These tools
enable the environmental scientist to investigate how items are selected
for recommendation and how to rank a specific type of items higher.

Third, another type of gap-bridging design enables players to switch
between different spatial and temporal perspectives. This benefited
exploring the garden and tinkering with the problems. For example, one
participant added a time travel function for learners to re-visit gardens
at different time points with different flowers alive. This design affords
a more effective comparison of items that exist in a recommendation
system and a more powerful interaction with the filter bubble forma-
tion. Students designed an option to observe the garden from a bird’s
view or zoom out the game map to inspect flowers from a third-person
view (Fig. 8.11). This also makes the flower diversity changes in the
garden more visible and concrete to children.

5.2.2. Support collaboration and competition for gamification
Following their interests, children helped with creating new social

interaction elements for more child-centered gamification — what adult
designers think is fun might not be fun enough for kids.

First, five distinct ideas were collected from children which intro-
duce more BeeTrap elements supporting social interactions to make
BeeTrap more engaging. Different roles of bees were proposed to map
with either different AI functions or different stakeholders of an AI sys-
tem. Children suggested roles beyond the bees that gather pollen, such
as peer bees communicating information regarding the flower diversity
(Fig. 8.8, 8.6), stay-home bees as data keepers, the protector bees who
protect the beehive and flowers from the damage caused by AI ethical
issues, queen bees as information collectors, worker bees using tools,
and bad bees attempting to destroy the user profile (Fig. 8.3). One
group added a bee shop to the game, for players to access different
types of bees; different bees cost different number of flowers which
is an incentive for boosting flower diversity (Fig. 8.13). Children also
brainstormed ways to integrate more bee behaviors into the learning,
such as bee dance and bee stinging (Fig. 8.7). In addition to adding dif-
ferent roles of bees, there was also an idea of having multiple scientists
as the analogy for different AI engineers, who would communicate and
collaborate to preserve the bio-diversity in the garden (Fig. 8.11).

Second, we identified five design ideas to enhance learners’ motiva-
tion to level up in the activities. One group created an idea for learners
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Fig. 8. New ideas co-designed by children: (1) the beehive is the power source; a honey pot carries nectar; (2) tree branches grow to collect data across different seasons; (3)
different types of bees have different AI functions; (4) a sun recommends different items; (5) canopy covers a diversity range; (6) peer bees collaborate for diversification; (7)
bees have different powers in the game; (8) peer bees communicate and pollinate flowers outside; (9) pollen clouds and rain circles grow flowers; (10) a tree moves the beehive;
(11) add different scientists and a third-person view; (12) water drops grow flowers, wind blows pollen to farther flowers, and a pot collects honey; (13) a bee shop sells bees for
different numbers of flowers, sprinklers reduce pollen and wind grows farther flowers; (14) game levels and stepping inside the beehive make the game more fun; (15) a flower
locator locates flowers, a fan grows flowers, and jail represents the filter bubble; (16) overlaid circles compare diversity ranges.

to help bees escape a fly trap representing the filter bubble to level
up (Fig. 8.7): ‘‘The fly trap can be a challenge. When a bee falls into
the fly trap, we can take the challenge to save the bee out of the fly
trap.’’ Another idea also suggested introducing more levels of challenge
in the game and embodying the challenge level with the size of the bee
(Fig. 8.2): ‘‘Bigger bees face harder challenges.’’

Third, nine ideas were identified as representations to enrich the
storytelling and roleplaying experiences with more toolkits contextual-
ized in the garden and biodiversity context. Honey, water, and pollen
buckets are added for the bees; bees have more storylines to conduct
mini-tasks such as collecting pollen from a certain type of flowers. One
group proposed the idea that the bee needs to fight against a fly trap
to pass a game challenge; the bee has different storylines with multiple
quests (Fig. 8.7).

5.3. RQ3. How does engaging as co-design partners impact children’s learn-
ing experiences of target AI concepts and their potential to expand their
understanding?

We identified three aspects of how co-design benefited students’
AI learning: (1) transfer the knowledge into AI concepts beyond the
original learning objectives; (2) enhance the learning of the target AI
concepts; (3) get motivated to ask in-depth questions about AI.

5.3.1. Transfer the knowledge into more advanced AI concepts
New designs demonstrate students’ understanding of more detailed

or in-depth AI concepts beyond the scope of existing learning objec-
tives: (1) collaborative filtering, (2) continuous output of the regression
algorithm, (3) mathematical processes underlying data diversity, and
(4) factors impacting AI recommendation performance.
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For collaborative filtering, one new design added diverse types
of bees as different users of the flower recommender. New flowers
grow based on both the flowers pollinated by the target bee and bees
similar to the target bee. This is aligned with the collaborative filtering
technique in some AI recommendation systems, which ranks items
based on both the user–item similarity and the user–user similarity.

For the regression algorithm’s continuous output, one group used
the analogy of ‘‘energy’’ to describe continuous value predicted by AI
recommendation systems, moving beyond the simpler binary predic-
tions of whether a flower bud would grow into a new flower in the
current learning experience.

More tangible visual representations are designed for hidden math-
ematical processes of algorithms, such as ranking items based on their
contribution to the data diversity among all the recommended items.
One group visualized ranking algorithms by depicting connections
between the beehive and buds with arrows and numerical values. This
visualization aimed to clarify that rankings are determined by the data
diversity of a group, represented by the total lengths of the connections
between flowers.

Lastly, students added impact factors of the performance of AI
recommendations, such as temporal and social interactions within the
human–AI systems. They suggested using different seasons, where flow-
ers bloom variably, as a metaphor for the evolving stages of AI recom-
mendation systems. This idea was also extended to the social dynamics
of bees, recommending the representation of social contexts in which
AI systems operate.

5.3.2. Enhance the learning of the target AI concepts
We also observed how co-design processes enhanced students’ grasp

of the target AI concepts. First, five distinct design ideas replaced the
pollen circle representing the ranking range in the recommendation
algorithm. One group of children drew a tree in which the canopy size
represents the data similarity/diversity range for ranking (Fig. 8.5).
Players could manipulate the canopy size by watering the tree or
removing the water. Flower buds within the shadow of the tree’s
canopy would grow into new flowers while the buds outside of the
tree’s shadow end up dying out. Other ideas included representing the
ranking range by the size of rain circles or pollen clouds (Fig. 8.9, 8.10),
watering pipes (Fig. 8.12), sunlight range (Fig. 8.4), etc.

Second, students created five new designs to represent user selection
history and data collection in the user profile. For example, one group
came up with the idea of using the sun to represent a user profile
(Fig. 8.4). The user selection history documented in the user profile
was embodied by the outer range of sunlight paths connecting with the
pollinated flowers. Within the range of sunlight, buds were available to
grow into new flowers, using the analogy of flowers receiving energy
from the sun to grow.

Third, three ideas embodied the filter bubble consequences more
explicitly. One idea was proposed to make the bee’s strength or health
vary based on the flower diversity they pollinate. If a bee does not
gather pollen from diverse flowers to get enough nutrients, its strength
would be downgraded, or else upgraded to become a stronger bee
(Fig. 8.14). This embodied filter bubbles’ ongoing impact on users of AI
recommendation systems and strategies for how users can counteract
filter bubbles’ negative effects. Another group trapped the bee in jail
to represent the filter bubble sequence (Fig. 8.15). It could motivate
children to face challenges and strive to level up.

Fourth, three ideas revealed the mathematical concepts underlying
the recommendation algorithm. One student overlaid two pollen cir-
cles, one large and one small, to help learners directly compare the
outputs of a larger versus a smaller ranking list (Fig. 8.16). This design
aimed to demonstrate the impact of specific steps in the diversification
algorithm.

5.3.3. Motivate students to ask in-depth questions about AI
We observed that students’ discussions during the co-design pro-

cess demonstrated that such design practices motivate students to ask
questions about more in-depth AI literacy that is not covered by the
current AR learning experience, such as user diversity, more advanced
data collection, and modeling in AI recommendation systems. Seven
students asked for more details about the existing target AI concepts
or discussed designs to convey those new AI concepts. One of them
suggested designing a watering pot with different spouts to represent
different ranking algorithms that decide which flower buds to grow.
One student mentioned: ‘‘From step 1 ‘bee selects a flower to pollinate’
to step 2 ‘the beehive holds the nectar of the selected flower’, I am
curious about what happens between the two steps. The current design
only shows results but the process is unclear.’’ Another student raised
a question about how to grow new flowers outside of the pollen circle,
behind which is how to generate new recommendations outside of the
ranking range for diversity or similarity-based ranking algorithms.

6. Discussion

To create a child-centered AI learning experience, we co-designed
with children from underrepresented backgrounds, building on the
baseline design of BeeTrap. This study revealed children’s preferences
and ideas for embodied and analogical representations of AI concepts.
We found that co-design practices can deepen children’s understanding
of abstract AI literacy by (1) enabling knowledge transfer to advanced
AI concepts beyond existing learning experiences, (2) enhancing their
grasp of the original target knowledge, and (3) encouraging students
to ask insightful questions about AI. We derived design implications of
using science concepts as analogies to teach children about AI concepts
(Section 6.1), identified design goals to engage children as co-designers
in analogical AI learning experiences (Section 6.2), and highlighted
co-design’s learning benefits (Section 6.3).

6.1. Design implications of analogies from science contexts for AI concepts

Our findings suggest K-12 science topics as effective sources of gen-
erating analogies to teach children about AI while the learning might
be hindered by the relational patterns underlying complex science
concepts.

K-12 science topics as effective analogies for AI concepts. Building on
prior work (Gentner et al., 2004; Nokes and Belenky, 2011), we
found that analogies based on familiar science contexts effectively
bridge the understanding of AI concepts. By mapping familiar scientific
ideas to new AI concepts, these analogies support students’ conceptual
change (Clement, 2013). Analogies typically involve two types of
similarities between the base and target domains: surface features,
such as color or shape, and deep structural properties (Gentner et al.,
2003). BeeTrap analogies were specifically designed to emphasize
structural similarity, which involves shared patterns of relationships
among constituent elements (Duit et al., 2001). For instance, the ana-
logical relationship between a pollinated flower, pollen, and beehive
helped students grasp the abstract concept of data collection in rec-
ommendation systems. The visualization of a bee pollinating a flower
and the subsequent collection of pollen into the beehive resonated with
students, allowing them to draw parallels between this process and how
user preferences are recorded and used in AI-driven recommendations.
The reasoning process aligns with analogical learning in which learners
identify similar relational patterns in both the base and target domains
and map correspondences between entities in both domains based on
their relational roles (Lu et al., 2019).

Familiar ethical concepts in K-12 STEM subjects could be a com-
mon ground for students with limited access to AI technologies to
understand AI ethical issues. For example, biodiversity, emphasizing
the necessity for bees to have diverse flowers to maintain their health
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overall, was a powerful analogy to illustrate the importance of diver-
sification in recommendation systems. This concept fostered students’
critical thinking that, much like a bee’s need for a variety of flowers,
we as consumers of recommendation systems also need diverse content.

Challenges in identifying relational patterns. However, the findings also
indicate that the relational patterns embedded within these analo-
gies and metaphors were not always immediately apparent to the
children. For example, a flower bud, representing potential items for
recommendation, did not always translate effectively into the stu-
dents’ understanding. The physical distance in the garden, meant to
symbolize data similarity or distance, was another concept that some
students struggled to fully comprehend, particularly in terms of its
representation of item–user distance. This is a known challenge in
analogical learning due to its context sensitivity and student expertise
gap (Hajian, 2018). Even with careful planning, students may fail to
notice the intended relational similarity (Harrison and Treagust, 2006).
The mixture of authentic biological concepts with artificial elements
also posed challenges. The artificial concept of a moving beehive, which
does not align with real-world behavior, confused several participants.
It is challenging and often impossible to find a source analog that
perfectly maps every relation in the target concept (Dai et al., 2024).

6.2. Design opportunities to involve children as co-designers

Our findings identify three design opportunities for engaging chil-
dren as co-designers of analogical AI learning experiences: (1) authentic
analogies drawn from science contexts, (2) metaphoric representations
that bridge the gap between science and AI concepts, and (3) elements
that incorporate gamified learning experiences.

Authentic analogies with higher degree of shared structure and relational
role. Children consistently highlighted the need for analogies that
closely mirror the patterns of reasoning found in the natural world, as
these more authentic analogies facilitate easier transfer of knowledge
and more effective analogical reasoning. For instance, many students
recognized the disconnect between the artificial elements in BeeTrap,
such as the moving beehive, and real-world garden behavior. This
recognition led to numerous design ideas aimed at replacing or refining
these representations to better align with actual scientific principles.
Examples include the bee carrying pollen and flying to the beehive.
These child-generated designs demonstrate a strong preference for
analogies that maintain a higher degree of fidelity to real-world science
and that share similar relational roles in reasoning. Understanding why
the base entity behaves as it does and then transferring that knowledge
to the target is crucial for learning through analogy (Gray and Holyoak,
2021). This aligns with research suggesting that the key to effective
analogical reasoning lies in identifying similar relational roles between
the base and target domains, rather than focusing on direct similarities
between individual entities (Lu et al., 2019).

Metaphoric representations bridge the gaps in analogies. To address gaps
where direct analogies may fall short, children created metaphoric
representations that bridge these gaps. Recognizing that certain analo-
gies, such as the moving beehive, did not fully align with real-world
behavior, students sought to create metaphors that would offer a more
intuitive learning experience. For example, one group reinterpreted
the concept of the pollen circle as ‘‘energy’’, a metaphor that helped
them understand how AI algorithms might assign different weights
to data points, leading to more nuanced recommendations. Students
introduced visual elements such as numerical values and connections
between the beehive and flower buds to make sense of the ranking
process in AI systems. This extends the finding from existing research
that novice adults can intuitively understand recommendation algo-
rithms through metaphoric representations (Alvarado et al., 2021).
This also links to extensive research on the learning benefit of story-
telling (Alterio and McDrury, 2003) that constructing understanding
by connecting with prior experience and knowledge can effectively
enhance learning (Mussen et al., 1983).

Engaging gaming elements. Children’s feedback and design ideas also
emphasized the value of incorporating gamification elements for more
dynamic and interactive learning environments. Children suggested
introducing various roles within the game, such as stay-home bees as
data keepers or protector bees guarding against ethical issues, which
could serve as analogies for different components or stakeholders in an
AI system.

Furthermore, the idea of incorporating levels of challenge, such
as helping bees escape from a fly trap or facing more difficult tasks
as a larger bee. The challenge of an educational game correspond-
ing to the learner’s skills could lead to a flow state in which the
learner is highly concentrated and experiences the learning activity as
intrinsically rewarding (Oksanen, 2013).

Integrating enriched storytelling was another key strategy students
used for improvement. By adding more contextually relevant toolkits,
such as honey or pollen buckets, and creating mini-tasks for the bees,
the children envisioned a more immersive and motivating educational
game.

6.3. Exploring co-design as a form of learning

Employing analogy for learning AI concepts is a niche area, and
hence children’s insights are valuable to inform and further improve the
learning design. However, co-design or participatory design with chil-
dren goes beyond merely involving children in the design process and
focuses on what designers can learn from participants. It encompasses
a set of methods and practices that scaffold the design experience,
encouraging children to reflect on their existing knowledge and build
upon it (DiSalvo, 2016). In exploring co-design through a learning lens,
it comes to light that co-design activities provide a rich environment for
children to understand what knowledge they have grasped, generate
analogical inferences, and collaboratively construct new knowledge in
new ways.

Through these activities, students were no longer passive recipients
of information but active participants in the learning process, which
deepened their understanding of the AI recommendation system. One
of the key indicators of this enhanced understanding was the students’
ability to transfer knowledge gained during the activities to more ad-
vanced AI concepts. For example, students demonstrated their grasp of
collaborative filtering by creating designs that mirrored user–item and
user–user similarity, a concept that extends beyond the simpler models
they were initially taught. Similarly, the introduction of ‘‘energy’’ as
an analogy for continuous values predicted by AI systems shows a so-
phisticated understanding of how AI recommendations can go beyond
binary predictions. It resonates with the research that engaging children
in co-designing their learning environment could help them develop a
deeper understanding of abstract concepts and translate this theoretical
knowledge into tangible solutions (Famaye et al., 2024).

Moreover, the creation of tangible visual representations of hidden
mathematical processes within AI algorithms, such as using arrows
and numerical values to depict data diversity in ranking algorithms,
further illustrates the depth of understanding achieved through these
co-design activities. Students also proposed innovative ideas, such as
using seasons to metaphorically represent the evolving stages of AI
recommendation systems and incorporating social dynamics into their
designs. This aligns with research that children generating solutions
to distant analogies selectively show their continuous attention to
relational information (Gray and Holyoak, 2021). This generation effect
could lead to better retention than passively viewing and evaluating
completed analogies (Metcalfe and Kornell, 2007). The co-design pro-
cess not only deepened understanding but also encouraged further
question-asking about AI literacy. The collaborative co-designing fos-
tered a sense of inquiry among students, leading them to ask questions
and explore concepts beyond the scope of the current learning expe-
rience. For instance, students expressed curiosity about the detailed
processes underlying AI recommendation systems, such as the steps
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between a bee selecting a flower and the beehive storing pollens, or
the mechanisms for generating new recommendations outside of a
predefined ranking range. These questions and discussions highlight the
students’ growing interest in the intricacies of AI and their desire to
delve deeper into the subject.

7. Limitations and future work

There are a few major limitations of this work, including the anal-
ogy design in BeeTrap, the limited number of participants, and the
unexpected study setup changes caused by the summer camp’s nature
of flexibility. First, as reported in Sections 5.1.4 and 5.2.1, gaps exist be-
tween real-world bee pollination and AI recommendation mechanism.
To bridge the gap, our design involves a few artificial objects (e.g., the
beehive that moves to the pollinated flowers) which break the scientific
facts. Although these analogies have been confirmed and some of them
are designed by a few in-service K-12 science teachers, and findings
do not indicate their harm in learning, we still consider them as a
limitation in our design and plan to improve them in future design
iterations. Second, with 11 high school students and nine middle school
students from two summer camps voluntarily signed up to participate
in the study, our sample size is too limited to conduct more statistical
analysis. Third, student attendance in a summer camp is relatively less
controllable. We had to adjust the grouping for three activities based on
the students who showed up on the day, and this is the reason that the
grouping for the diversification activity is different from the first two
activities. Moreover, an unexpected occupation of the study site made
s2p1 wait for a long time before she could play with the diversification
activity. Such unavoidable disruption in the study may influence s2p1’s
interest and engagement with the learning experience.

Beyond the current scope, we have not investigated the unique
learning benefits of different design dimensions: (1) AR versus non-AR,
(2) embodied versus non-embodied, and (3) analogical versus non-
analogical. Future work could also validate the co-design outcomes
with a broader audience. We can observe children’s learning behaviors
when multiple analogies and embodied metaphors are provided to
represent the same AI concept. With the fast advances in generative
AI (GAI), another promising research direction is to explore how GAI
can support children’s co-design for AI literacy.

8. Conclusion

This study focused on co-designing embodied and analogical learn-
ing experiences with children using an AR application to teach AI
concepts related to the filter bubble’s impact, mechanisms, and miti-
gation strategies. BeeTrap was used as the baseline design for engaging
children as co-designers. By empowering children in the design process,
the study enhanced the child-centered AI learning experience. Findings
revealed that children identified gaps in analogy and metaphor design,
highlighting the need for explicit representation of underlying AI sub-
concepts. They also developed new designs to address mismatches
between the source and target domains. Through co-design practices,
children achieved a deeper understanding of abstract AI concepts and
demonstrated the ability to transfer their knowledge to more advanced
aspects of AI literacy.
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