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ABSTRACT
Machine Learning (ML) can provide an advanced lens for K-12
students to get their hands on intriguing patterns from real-world
data and has the potential to empower young learners with more
challenging cognitive skills needed for iterative scientific investiga-
tion. However, few efforts have been taken to unearth the unique
challenges to engage K-12 teachers and students in ML-empowered
scientific discovery (SD) learning. Moreover, it is under-explored
what scaffolding can be designed to mitigate the challenges. Based
on our previous study and literature research, we identified three
gaps for novice learners to conduct ML-empowered SD: (1) cogni-
tive overload in ML visual analytics; (2) insufficient synthesis of
multivariate patterns for hypothesis development; (3) the lack of
evidence evaluation during the iterative investigation. We also pro-
pose three corresponding scaffolding components and evaluation
studies for the next step.
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1 INTRODUCTION
Machine Learning (ML) is a promising tool for K-12 scientific dis-
covery (SD) learning because it can reveal complex patterns to
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discover new knowledge from a large amount of data [19, 23] and
the young generation needs to be prepared for the increasingly
data-driven intelligent world [25, 27]. More research efforts have
been made to introduce ML to K-12 students [9, 14, 17, 18]. How-
ever, little is known about how to design effective ML-empowered
SD for K-12 students and teachers. The scientific explanation with
ML-discovered results requires interpretational skills that are more
challenging for young learners, such as making sense of anomalies
detected and evaluating different data patterns by comparisons [13].
Beyond that, it would be even more demanding for K-12 students
to steer the ML-empowered investigation (e.g., conducting ML ex-
perimentation, keeping track of multivariate hypotheses) [10, 22]
while applying ML, the unfamiliar discovery tool, in relatively open-
ended discovery learning.

To investigate applying ML as an SD tool for K-12 STEM educa-
tion, we had designed a web-based learning environment named
SmileyDiscovery [35], which makes k-means clustering accessi-
ble to novice learners in SD learning. Findings from our previous
study with 18 K-12 STEM teachers [35] and further literature re-
search indicate three major gaps for novice learners to interpret
ML-discovered results during SD learning: (1) the extraneous load
caused by translation between data and visual representation in ML
analysis; (2) insufficiently synthesizing the ML-discovered evidence
for hypothesis development; (3) cognitive challenges for young
learners to evaluate different evidence forms to confirm/challenge
hypotheses. To bridge these gaps, in this paper, we propose three
scaffolding components informed by existing scaffolding design
guidelines [22] and skills needed for scientific explanation [13],
including (1) automatically parsing the graphical patterns in data
visualization into patterns in data attributes, (2) facilitating hypoth-
esis tracking and construction in multidimensional feature space
during the iterative investigation, (3) hints adaptive to data patterns
for learners to interpret. For the next step, we will evaluate the effec-
tiveness of the new design components on facilitating K-12 students
to interpret complex patterns revealed by ML, construct hypotheses
progressively, and develop challenging scientific skills in evidence-
based discovery. Our scaffolding components can engage young
learners in a more meaningful and authentic ML-empowered SD
learning experience beyond SmileyDiscovery. The initial design
space proposed also aims to set the stage for a wide variety of
ML-empowered learning environments in the future.
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2 RELATEDWORK
2.1 Scaffolding Design for

Computer-Supported SD Learning
Investigating meaningful and authentic science inquiries in differ-
ent technology-enhanced learning environments [6, 24, 33] can
empower learners to develop science knowledge and computa-
tional skills [10, 22]. To support learners’ navigation in challeng-
ing and open-ended problems, a scaffolding design framework for
Computer-Supported SD learning [22] has been developed for three
constituent processes for inquiry: sense-making, process manage-
ment, articulation & reflection. Recently, a few efforts have fo-
cused on how AI/ML can transform K-12 students’ STEM learning
[16, 18, 25, 31, 34–36]. However, existing scaffolding mainly in-
volves technical facilitation or prompts provided by researchers
manually [25, 34, 36] and data visualization that makes ML concepts
or ML-generated results accessible [16, 31, 35, 36]. Thus, it is still an
under-explored design space on what automated scaffolding can be
designed to tackle the unique challenges in SD learning enhanced
by ML for K-12.

2.2 Visual Analytics for ML
Many visual analytics systems have been developed to make sense
of large and complex data processed by ML and other analytic
techniques [4]. Pirolli and Card’s sense-making loop model [21]
illustrates how people gain insights from data by using visual ana-
lytic tools through a series of cognitive stages, including searching
and storing relevant information, structuring the information for
further explanation, constructing and testing hypotheses, and de-
riving conclusions. The Data-Frame Model [12] encourages people
to question and reframe their understanding of data, which is the
cognitive challenge for young learners to interpret different forms
of evidence [13]. From the perspective of constructing visual repre-
sentations for source data, the information visualization pipeline
[8, 28] depicts the process of data transformation, visual mappings,
and view transformation. Though being informative to facilitate
learners’ process management in science inquiry [22], existing vi-
sual analytics systems are not yet accessible for K-12 students who
are still developing cognitive skills for scientific investigation. Thus,
a corresponding scaffolding design is needed.

3 DESIGN SPACE FOR SCAFFOLDING
ML-EMPOWERED SD LEARNING

3.1 Prior Work
In our prior study, 18 K-12 STEM teachers applied ML in an SD
learning activity about ecosystems using a web-based platform
named SmileyDiscovery [35]. SmileyDiscovery utilizes glyph-based
visualization [1, 32] to make multidimensional data accessible and
playful for K-12 students by mapping individual data attributes
(e.g., latitude) to graphical features of a face glyph [2] (e.g., mouth
size) (Fig. 1a [35]). Besides, different glyph placements are provided
for pattern interpretation (Fig. 1b [35]). We evaluated SmileyDis-
covery’s effectiveness of making cluster analysis interpretable for
novices and its pedagogical potential in K-12 STEM learning by
inviting teachers to interact and design their learning activities
with SmileyDiscovery [35]. Furthermore, we identified the gaps

teachers encountered while conducting SD with SmileyDiscovery
by analyzing their discovery process with system log data and their
feedback on the learning experience [35]. In Section 3.2 and Section
3.3, an overview of the scaffolding design space and corresponding
gaps are discussed, respectively.

3.2 Scaffolding Design Space for
ML-Empowered SD Learning

Based on the empirical evidence collected and further literature
research, we propose an initial scaffolding design space for K-12
ML-empowered SD learning (Fig. 2). It focuses on the flow of data
interpretation for hypothesis generation and evolvement in ML-
empowered SD. Fig. 2(1), informed by the information visualization
pipeline [33], shows a necessary step of transforming complex mul-
tidimensional data and ML-discovered results into accessible visual
representations for K-12 students to observe. Fig. 2(2), similar to
the “read&extract” step in the sense-making loop [21], refers to
the cognitive stage where learners interpret visual representations
into data patterns as evidence for further scientific explanation and
hypothesis evolvement. For example, an analyst observes a cluster
plot and interprets intra-cluster patterns for further synthesis and
explanation. Fig. 2(3) targets confirming/challenging the hypothe-
sis by interpreting patterns discovered. It points out an essential
cognitive skill for scientific discourse: evaluating different evidence
forms based on the claims derived [13], in addition to the CER
(reasoning how the evidence supports the claim) procedure [7, 15]
that is commonly used to facilitate scientific explanation in K-12
classrooms.

3.3 Identified Gaps for New Scaffolding
Components

We identified three gaps in the design space that need new scaf-
folding components. First, ML visual analytics [33] requires learn-
ers to connect visual forms to source data for sense-making in
the science context. This brings extra cognitive load to SD, which
already has various memory requirements [11], impairing learn-
ers’ performance in extracting evidence from data patterns to in-
vestigate the target science inquiry (Fig. 2 G#1). In our previous
study, learners reported that it is overwhelming to translate pat-
terns in graphical glyph features (e.g., big mouth and small eyes)
back to science context with data attributes (e.g., high temperature
and small beetle richness) [35]. Second, from log data of teachers’
text input and clicking behaviors [35], we observed that it is chal-
lenging for them to sufficiently synthesize all the ML-discovered
patterns and evolve hypotheses accordingly (Fig. 2 G#2) due to
their unfamiliarity with multivariate analysis [5, 26]. Though K-12
teachers were able to interpret multivariate patterns during the
investigation (e.g., one cluster of field sites shares patterns of high
temperature&precipitation&canopy, low latitude, and high beetle
richness while another cluster has high temperatures, low precipi-
tation&canopy&latitude, and low beetle richness), the hypotheses
they derived tended to stay binary (e.g., precipitation and beetle
richness are positively correlated) and lack adequate synthesis of
the evidence collected. Third, novice learners have little experience
interpreting anomaly cases or complex and seemingly controver-
sial patterns revealed by ML from messy real-world data (Fig. 2
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(a) Visual mapping for a face glyph. (b) Glyph placements and interaction for more accessible data patterns revealed by ML.

Figure 1: Glyph visualization and interaction designed in SmileyDiscovery for the prior study.

Figure 2: Design space and gaps identified for scaffolding inML-empowered SD learning:G#1. Interpret visual representations
into data patterns to collect evidence during the investigation; G#2. Iteratively derive claims by synthesizing multivariate
evidence to confirm/challenge the hypothesis; G#3 Evaluate different forms of evidence in relation to the claims.

G#3). There is a cognitive gap for young learners to distinguish
the strengths and limitations for different evidence forms to con-
firm/challenge hypotheses [13]. For example, novice learners might
find it confusing to confirm a hypothesis based on quantitative
evidence from ML-discovered patterns when they observed outliers
that seem to be counterexamples [35].

4 SCAFFOLDING COMPONENTS FOR K-12
ML-EMPOWERED SD LEARNING

4.1 S#1: Automatic Translation for Data
Interpretation with Visual Representation

To engage learners more directly in the science context after observ-
ing visual representations and reduce the extra layer of cognitive
load (Fig. 2 G#1), we propose the design to automatically parse
learners’ direct analysis of graphical glyph features into patterns in
data attributes (Fig. 3). When the cursor hovers on a glyph element,
a window will pop up containing corresponding glyph features. For
example, hovering the cursor over the mouth of a face glyph acti-
vates the graphical features related to the mouth (i.e., the vertical
location of the mouth, the size of the mouth) and sliders display-
ing the attribute values (Fig. 3(1)). While learners are dragging
the thumb along a slider track, the corresponding graphical glyph
feature changes to indicate how the attribute value influences the
visual representation in real-time. Whenever learners stop inter-
acting with a slider, the face and the slider reset the inputs to their
original shape and value, respectively.

Taking such frequent and nonsalient tasks off students’ cogni-
tive load can better engage them in scientific inquiry with a deep
cognitive focus on the salient activities [3, 22], such as how the

ML-discovered patterns in data attributes can be interpreted and
confirm/challenge the hypothesis. Furthermore, both ends of the
slider indicate the minimum and maximum value of that attribute
and thus contextualize individual data points in the entire dataset.
This guides learners to step back and examine the larger context
where they can interpret the values of data attributes more subjec-
tively.

4.2 S#2: Develop Hypotheses Based on
Multivariate Patterns Revealed by ML

To facilitate novice learners to synthesize multivariate patterns
sufficiently (Fig. 2 G#2), we propose a new design for updating
hypotheses on corresponding data attributes during the iterative
scientific investigation (Fig. 4). Learners can construct hypotheses
based on the multivariate patterns revealed by ML in a collapsi-
ble modal window (Fig. 4(1)-(2)). Hypothesis tracking on demand
(Fig. 4(3)) restricts the complexity of hypothesis evolvement by
setting informative boundaries, thereby enhancing learners’ con-
centration during the investigation [22].

In conjunction with open-ended inquiry recording (Fig. 4(5a)-
(5b)), the construction of a concept map (Fig. 4(4a)-(4c)) that encodes
the direction and the magnitude of the correlations among multi-
ple variables scaffolds young learners in an active meta-cognitive
process to articulate multivariate correlations in scientific expla-
nation step by step [22]. Such refined development can provide
us with considerable specificity on what the learner already un-
earths that can be built upon, anchored in the zone of proximal
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Figure 3: Automatic translation from (1) visual representation to (4) patterns in data attributes for further scientific explana-
tion.

development [20, 29]. For example, after intra-cluster pattern inter-
pretation reveals that one cluster of field sites shares high tempera-
tures&precipitation&canopy, low latitude, and high beetle richness
while another cluster has patterns of high temperatures, low precipi-
tation&canopy&latitude, and low beetle richness, learnersmay infer
that beetle abundance requires lush and humid environments. Thus,
they can mark potential correlations in the hypothesis builder one
by one (Fig. 4(4c)) for further validation with more ML-discovered
evidence.

4.3 S#3: Hint Design to Evaluate Evidence for
Iterative Investigation

To mitigate the cognitive challenges for young learners to evalu-
ate different evidence forms (Fig. 2 G#3), hints to guide learners’
pattern interpretation are designed as the third scaffolding compo-
nent (Fig. 5). Based on different forms of patterns a learner could
be currently interpreting [13], hints will be generated right be-
side to facilitate the learner to evaluate the scientific explanation
and plan further investigation accordingly (Fig. 5a). For example,
in cluster analysis, intra-cluster patterns revealed by a clustering
algorithm suggest that mammal abundance requires warm & hu-
mid & lush environments. However, an outlier with low tempera-
tures&precipitation&canopy but relatively high mammal richness
maymake learners hesitant about confirming the hypothesis. In this
case, a hint can be provided to scaffold novice learners to evaluate
the outlier and explore potential directions for further investigation.
Fig. 5b shows an example designed for SmileyDiscovery.

Such hints adaptive to the paths of investigating a science inquiry
[30] can provide structure for complex tasks in SD and enhance
learners’ ongoing reflection by highlighting the epistemic features
of investigation [22]. Specifically, such hint design can address the
cognitive challenge for young learners to establish a more critical
and dynamic perspective on the evidence-claim relationship [13]
and develop corresponding scientific skills. For data patterns that
are not expected in the diagram (Fig. 5a), generic hints will be
provided close at hand to inspire learners’ next steps, such as “How
could this result have happened?”, “If my explanation is true, what
patterns should also be found in the data?”, “What are any other
potential mechanisms that would have given these results?”.

5 PILOT TEST AND FUTUREWORK
In our next phase, we will first pilot test the usability of each scaf-
folding component proposed above by implementing them in the
next version of SmileyDiscovery. For S#1, the evaluation will fo-
cus on the efficiency and accuracy of learners completing pattern

interpretation tasks compared to the condition of using the Smiley-
Discovery from the prior study [35]. For S#2, the primary goal is
to evaluate if it can help young learners synthesize complex ML-
discovered patterns and evolve hypotheses more effectively. For
S#3, we plan to evaluate the learnability of different hints, looking
at how efficient they are for K-12 students to evaluate the evidence
in relation to the claims.

After the pilot test, we will conduct both a teacher study and
a student study. For the teacher study, we aim to gain a deeper
understanding of the connections between ML-discovered patterns
and SD practices in K-12 STEM education. For the student study,
we plan to evaluate if ML-empowered SD learning can be beneficial
for young learners to develop challenging scientific skills [13]. We
also would like to investigate the effectiveness of the scaffolding
design for other ML methods to empower K-12 SD learning.
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