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Abstract
The advances of machine learning (ML) in scientific discovery (SD) reveal exciting 
opportunities to utilize it as a cross-cutting tool for inquiry-based learning in K-12 
STEM classrooms. There are, however, limited efforts on providing teachers with suf-
ficient knowledge and skills to integrate ML into teaching. Our study addresses this gap 
by proposing a professional development (PD) program named ML4STEM. Based on 
existing research on supporting teacher learning in innovative technology integration, 
ML4STEM is composed of Teachers-as-Learners and Teachers-as-Designers sessions. 
It integrates an accessible ML learning platform designed for students with limited 
math and computing skills. We implemented this PD program and evaluated its effec-
tiveness with 18 K-12 STEM teachers. Findings confirm that ML4STEM successfully 
develops teachers’ understanding of teaching STEM with ML as well as fosters positive 
attitudes toward applying the ML as an in-class teaching technology. Discussions on the 
implications of our findings from ML4STEM are provided for future PD researchers 
and designers.
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Introduction

With the rapid development of artificial intelligence (AI), there is a growing need 
for preparing 21st-century students with basic AI literacy (Evangelista et al., 2018). 
Machine learning (ML), as a key branch of AI, makes predictions and uncovers key 
insights from big data. It has advanced technologies in a wide range of applications 
such as personal assistants, self-driving cars, and healthcare and recently, the function 
and role of ML in education is being increasingly addressed (Gil et al., 2014).

There are emerging efforts to introduce AI to K-12 education (Touretzky et al., 2019; 
Marques et al., 2020), with the main focus on extending CS and Engineering curricula 
with AI/ML knowledge (e.g., Kahn and Winters (2017), Sabuncuoglu (2020), Sperling 
and Lickerman (2012), and Druga (2018)). These efforts required dedicated teachers with 
strong AI/ML content knowledge to be successful and often reach limited numbers of 
students in a school. Recent efforts started incorporating AI/ML learning experiences 
with science contexts (e.g., Zhang et al. (2019), Lin et al. (2020), Sakulkueakulsuk et al. 
(2018), Evangelista et al. (2018), and Zimmermann-Niefield et al. (2019)). These efforts 
also have limitations and barriers as they could easily overwhelm in-service STEM teach-
ers who already have heavy teaching workloads, and they may also lack a computing 
background for learning and teaching AI/ML (Marques et al., 2020). Therefore, we pro-
pose a new approach to introducing ML to K-12 classrooms, which is to integrate basic 
and accessible ML technologies with crosscutting discovery tools for a broad range of 
STEM subjects, before revealing more in-depth ML concepts and methods. One recent 
study (Zimmermann-Niefield et al., 2019) has shed light on integrating ML with the non-
CS STEM curriculum and showed K-12 students’ potential for data collection and model 
evaluation through athletic moves. Yet there remain a research gap in Professional Devel-
opment (PD) programs to prepare K-12 STEM teachers to adopt ML in their classroom, 
as highlighted by a recent review study about the lack of suggestions and empirical evi-
dence on “the training of instructors to prepare them adequately for the application of the 
ML-based instructional materials in the classroom” (Marques et al., 2020).

As a new discovery tool, ML may provide novel learning opportunities that engage stu-
dents in authentic and evidence-based scientific inquiry that constitutes the core science 
practices for K-12 STEM standards, such as asking questions, developing models, analyzing 
and interpreting data, and engaging in argumentations with evidence (States, 2013). Imagine 
if, with ML-empowered discovery tools accessible to novice learners without much experi-
ence in ML, a biology teacher can facilitate students to learn, discover and make sense of 
various ecological phenomena from online datasets. Unexpected or puzzling patterns may 
spur students’ curiosity, leading students to ask big questions about the puzzling phenom-
enon and obtain a more profound understanding through intrinsic investigation.

Preparing teachers to integrate ML into STEM classrooms is challenging mainly for three rea-
sons: (1) lack of pedagogical knowledge for teachers to apply ML as a scientific discovery (SD) 
learning tool in STEM teaching (e.g., Sullivan et al. (2020) and Zhang et al. (2019)); (2) techno-
logical barriers for K-12 teachers to sufficiently apply ML technologies in STEM contexts (Mari-
escu-Istodor and Jormanainen, 2019); and (3) absence of ML-empowered SD lesson plans that 
demonstrate how K-12 STEM learning can benefit from the introduction of ML. Without such 
knowledge and resources, teachers might be misplaced with fear or underrate their capabilities 
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to teach with ML, which may impact their belief and attitude to apply ML  their instruction plans 
(e.g., Inan and Lowther (2010), Kim et al. (2013), Mouza (2009), Marques et al. (2020), and 
Tang (2019)).

To address these challenges, we propose ML4STEM, a novel PD framework that 
aims to prepare K-12 teachers to integrate ML as a new discovery tool in STEM 
teaching. ML4STEM is composed of two sessions: Teachers-as-Learners (TaL) 
and Teachers-as-Designers (TaD). The TaL session aims to develop teachers’ ini-
tial technical understanding of ML in the K-12 STEM context by going through an 
example ML-empowered SD learning activity named SmileyDiscovery 1. Smiley-
Discovery (Zhou et al., 2021) is extended based on an existing ML learning environ-
ment called SmileyCluster 2, which has been proved to be highly accessible to high 
school students with limited math and computing backgrounds (Wan et al., 2020). 
It utilizes novel face-based data visualization technologies to teach k-means clus-
tering, a representative unsupervised ML method widely used in STEM domains 
such as biology, climate, and medicine (Tan et al., 2016). The TaD session aims to 
facilitate teachers to obtain pedagogical knowledge of utilizing key ML components 
involved in clustering to fulfill scientific inquiry processes. This is achieved through 
a co-design workshop that supports the K-12 teachers to collaboratively design 
authentic ML-empowered STEM lesson plans by applying different ML components 
from SmileyDiscovery (e.g., multidimensional data exploration, similarity computa-
tion, pattern recognition etc.) in various stages of scientific inquiry (e.g., concep-
tualization, exploration, interpretation etc.). ML4STEM is developed based on the 
PD literature on fostering teacher learning for “technology integration”, including 
the learning goals and the principles of effective learning activities (Kopcha, 2012; 
Mouza, 2009; Tondeur et  al., 2012). We designed the learning goals by adapting 
the TPACK (Mishra and Koehler, 2006) framework, which is an established PD 
framework that explicates the essential knowledge components for effective teaching 
with technology in various K-12 contexts. In addition, we adopted five principles 
of effective learning activities to mitigate identified technological and pedagogical 
learning barriers: learning by design, hands-on experience with technology, mod-
eling of technology use, collaborative participation, and reflection.

We applied the ML4STEM PD framework in the Integrating Technology with 
STEM teaching course in a school of education at a research-based university in New 
York State. The study took place in two 75-minute online classes in two consecutive 
weeks, with 18 K-12 in-service STEM teachers. We evaluated teachers’ knowledge 
development through the established TPACK framework (Koehler & Mishra, 2009) 
and belief change. Findings confirmed the effectiveness of ML4STEM in supporting 
K-12 teachers to obtain key PD skills of (1) teachers’ technological understanding 
of the ML components of SmileyDiscovery, (2) applying k-means clustering in dif-
ferent subject matters, (3) pedagogical understanding of strengths and limitations of 
using ML components offered by SmileyDiscovery for in-class SD learning instruc-
tions, and (4) applying ML components in SmileyDiscovery to design inquiry-
based learning activities for STEM topics. Teachers’ confidence and interest in ML 

1 https:// pacifi c- headl and- 34136. herok uapp. com/
2 https:// augni tionl ab. github. io/ FaceO verlay_ Publi sh/

https://pacific-headland-34136.herokuapp.com/
https://augnitionlab.github.io/FaceOverlay_Publish/
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integration progressively increased through the TaL to TaD sessions. Insights on 
patterns for knowledge development and belief change, design guidelines for future 
ML-STEM integration, as well as limitations are discussed in this paper.

The main contributions of this study are three-fold: (1) provide a novel PD frame-
work for integration of ML into K-12 STEM teacher learning; (2) offer the corre-
sponding measures that help evaluate teacher learning outcomes of ML knowledge 
development and ML-STEM integration; and (3) present the design guidelines for 
future ML-STEM integrations in K-12 PD programs.

Related Work

Our work builds on research in ML, K-12 STEM education, and teacher PD. We first 
introduce the existing work that connects ML methods with SD practices, a promis-
ing approach to integrating ML into the K-12 STEM curriculum. Then, we discuss 
recent efforts on preparing K-12 teachers to learn and teach ML in class, mainly 
focusing on the challenges in teacher learning and the limitations of the PD program 
design. Finally, we present literature that informs our ML4STEM PD program in 
three sub-sections: (1) TPACK PD framework, (2) pedagogical principles for effec-
tive learning activities, and (3) strategies of PD design.

ML‑enhanced Scientific Discovery

As an essential branch of AI, ML plays an increasingly important role in scientific 
discovery for the STEM communities (Langley, 2000) by suggesting novel corre-
lations, accelerating data search processes, and revealing complex patterns from 
a large amount of data (Gil et al., 2014). There are three main types of ML methods: 
supervised learning, unsupervised learning, and reinforcement learning.

Unsupervised learning draws  an inference from datasets without data labels, 
which provides a convenient and exploratory lens into some basic ML concepts such 
as multi-dimension feature space and similarity comparison (Wan et al., 2020). As 
one of the most popular unsupervised learning algorithms, k-means clustering has a 
wide range of applications in scientific discoveries across different STEM domains, 
such as hydrology (Ay & Kisi, 2014), ecology (Kupfer et al., 2012), chemistry (Per-
ini, 2013), biology and archaeology (Romesburg, 2004). Researchers have applied 
k-means clustering to identify underlying data patterns (Romesburg, 2004), and con-
duct scientific discoveries, such as uncovering shared features within each cluster 
of objects (Essinger & Rosen, 2011; Evangelista et al., 2018), inferring correlations 
between attributes (Skapa et  al., 2012), and supporting feature selection for mod-
eling (Wang et al., 2014).

Teaching ML in K‑12 STEM Contexts

Current research on professional learning for teaching ML in K-12 STEM is limited 
(Marques et al., 2020). We identified three studies pursuing this line of inquiry. One 
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study (Vazhayil et al., 2019) designed a teacher education program for computer sci-
ence teachers to learn how to introduce ML in their schools. Another study (Zhang 
et al., 2019) trained teachers to integrate computing thinking with science teaching 
by using a model named Logic Programming. Both projects attempted to develop 
teachers’ understanding of ML through merely direct instructions, such as present-
ing slides and providing the textbooks; however, it might fail to enable teachers to 
connect ML applications with their teaching practice. On the contrary, (Sullivan 
et al., 2020) designed an active learning environment for elementary school teachers 
to learn the integration of ML into teaching. Specifically, they required teachers to 
work in dyads and think about the connections between computing practices (e.g., 
creating algorithms and writing codes) and specific content areas (e.g., English, 
mathematics, and science). However, this study lacks a systematic description of the 
PD program design and the associated evaluation approach to examine the process 
of teacher learning. Such knowledge is essential for guiding future researchers or 
practitioners in designing an ML integration PD program. Thus, our study aims to 
address this gap by exploring guidelines and evaluation methods for a PD program 
that develops K-12 teachers’ competence in teaching with ML.

TPACK PD Framework

TPACK, developed by Koehler and Mishra (Koehler & Mishra, 2009), is a well-
recognized PD framework that explicates seven knowledge components for technol-
ogy integration into teaching: Content knowledge (CK) - subject matter to be taught 
and learned in class (e.g., mathematics, literacy, and history); Pedagogical knowl-
edge (PK) - practices of teaching knowledge, including classroom management, 
learning styles & characteristics of students, and instructional methods; Technol-
ogy knowledge (TK) - productive operation of technology in theories and in prac-
tices; Pedagogical content knowledge (PCK) - pedagogical knowledge applied to a 
specific subject area (e.g., using inquiry-based learning approach to teach biodiver-
sity); Technological content knowledge (TCK) - the content ideas that are enhanced 
or constrained by the technology; Technological pedagogical knowledge (TPK) - 
the pedagogical practices are supported or not supported by a specific technology; 
Technological pedagogical and content knowledge (TPCK) - the holistic technol-
ogy integration that emerges from interactions among content, pedagogy, and tech-
nology knowledge. It is considered the basis of good teaching with technology and 
requires an understanding of the pedagogical strategies that use technology in con-
structive ways to teach content.

ML4STEM mainly focuses on four particular dimensions, namely TK, TCK, 
TPK, and TPCK, as they are suggested by prior work to have unique connections 
with technologies (Mouza, 2009).

Pedagogical Principles for Effective Learning Activities

There is a rich literature on pedagogical principles of effective learning activities 
that facilitate knowledge development for learners with varied backgrounds. We 
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introduce five principles in this section that inform the design of ML4STEM to 
address the challenges for integrating ML to STEM classrooms.

Learning by Design

Designing the instructional materials for technology use requires teachers to explore 
the technology for specific educational purposes, therefore encouraging them to sys-
tematically make connections between technology, subject matters, and the means of 
teaching (Koehler & Mishra, 2005a). It is, therefore, argued to be the most desirable 
method for developing TPCK (Koehler & Mishra, 2005b; Bakah et al., 2012; Ton-
deur et al., 2012; Polly et al., 2010). Studies have shown that such activities not only 
develop teachers’ understanding of TPCK (Tondeur et al., 2012; Polly et al., 2010) 
but also help teachers develop positive attitudes toward implementing technology in 
practices (Voogt et al., 2011; Cober et al., 2015). ML4STEM adopts the learning by 
design principle by including designing ML-empowered SD lesson plans that utilize 
basic ML components and SD learning activities in the PD program.

Hands‑on Experiences with Technology

Unlike traditional lecture-based PD programs, constructivist researchers view the 
nature of knowledge as dynamic rather than static, and argue that teachers can gain a 
meaningful understanding of the technology integration by engaging in the technol-
ogy-facilitated activities themselves (Darling-Hammond et al., 2017; Goktas et al., 
2008). Previous studies demonstrated that hands-on experience provides teachers 
opportunities to develop understanding of the concepts and skills required for the 
technology operation (Tearle & Golde, 2008) and builds their technical competen-
cies (Kim et al., 2013; Mouza, 2009).

Modeling of Technology Use

Modeling of technology use refers to the exemplar showing the connections between 
content, pedagogy, and technology. This is important for teachers, especially at the 
early stage of developing an understanding of how new technology can be adapted 
to subjects teaching (Huizinga et al., 2014), as well as teachers’ interests in technol-
ogy adoption (Haydn & Barton, 2007; Tondeur et  al., 2012). If teachers have no 
prior knowledge of technology use, it is impossible for them to construct the mean-
ing and apply it for teaching because such information is not stored in their cognitive 
structures (Bruner et al., 1966). ML4STEM adopts modeling of technology use by 
providing teachers tutorial videos that demonstrate examples of using the chosen 
ML tool to carry out SD learning activities.

Collaborative Participation

Many studies supported the benefit of working in groups when learning about the 
educational use of technology (Angeli & Valanides, 2009; Darling-Hammond et al., 
2017; Kopcha, 2012; McKenney et al., 2015). The involvement of technical experts 
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is significant for teachers to digest the technical concepts or skills and then develop 
an understanding of using them in practice. Studies showed that working with tech-
nical experts can improve teachers’ access to technology, provide a clear vision for 
using technology for instruction, and foster teachers’ belief about technology inte-
gration during the planning and implementation of a technology-enhanced learning 
environment (Kopcha, 2012). In addition to technical experts, research found that 
collaborating with peer teachers brings benefits to using technology for teaching 
content areas (Kali et al., 2015), reducing anxiety associated with learning (Angeli 
& Valanides, 2009), and broadening understanding of different teaching approaches 
with technologies (Darling-Hammond et al., 2017).

Reflection

Reflection is an active process for exploring the potential of technology integra-
tion for class teaching, which can bring transformative changes to teacher learn-
ing after incorporating it with technology (Boud et  al., 1996). Learning activities 
such as hands-on learning only provide teachers with limited experiences of what 
the technology can do, but reflection activities have demonstrated to be helpful to 
grow teachers’ in-depth understanding through critical thinking and contemplation 
of the connections between the use of technology and teachers’ own teaching prac-
tices (Webster-Wright, 2009; Tondeur et al., 2012; Jang, 2008). ML4STEM adopts 
several reflection practices including discussing the strengths and limitations of ML 
technologies in teaching (Tearle & Golde, 2008; Matuk et  al., 2015) and writing 
the journal (Tondeur et al., 2012) to help teachers enhance understanding and make 
connections.

Strategies of PD Program Design

Besides the design of learning activities, previous research provides valuable sug-
gestions on the overall design of PD programs for improving teachers’ learning of 
teaching with technology. One of the common PD program design strategies is to 
include an extensive duration. Several studies have shown that professional learn-
ing does not occur as a one-time effort (Kim et al., 2013; Mouza, 2009). Thus, it is 
necessary to provide sufficient time for teachers to experience the technology and 
to transform such experience into learning. The other common strategy is intro-
ducing progressiveness in the learning process. According to Koehler and Mishra 
(Mishra & Koehler, 2006), different dimensions of knowledge are not developed 
simultaneously. Usually, TK is developed first, followed by TCK and TPK (no par-
ticular order), and finally TPACK. Therefore, in order to achieve the true integration 
of technology, pedagogy, and content knowledge, incremental supports should be 
provided to satisfy the progressive needs of change (Kim et al., 2013). ML4STEM 
adopts both strategies by offering a two-session teacher learning experience, Teach-
ers-as-Learners and Teachers-as-Designers (Kali et al., 2018),with efficient reflec-
tions after each session.
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The Design of ML4STEM Professional Development Program

ML4STEM PD framework aims to help teachers understand how to apply ML in 
K-12 STEM teaching, with two specific learning goals: (1) Knowledge develop-
ment: Prepare K-12 teachers with sufficient knowledge to utilize ML as a new dis-
covery tool for STEM teaching relevant to the implementation of innovations, and 
(2) Change of belief: Facilitate teacher’s belief change in applying ML into STEM 
class teaching. For the knowledge development goal, ML4STEM adopts the TPACK 
framework, specifically focusing on TK, TCK, TPK, and TPCK due to their related-
ness with technologies. Table 1 lists the definitions of these constructs in the context 
of ML integration.

In this section, we will first introduce the ML-empowered SD learning tool 
adopted in the ML4STEM PD framework, and then describe the detailed design of 
the ML4STEM PD framework.

ML‑empowered Scientific Discovery Tool

As part of the ML4STEM PD program, our study used SmileyDiscovery (Zhou 
et al., 2021) by adapting an accessible ML learning platform named SmileyCluster 
for high school students (Wan et al., 2020). Preliminary findings showed that Smi-
leyCluster can effectively introduce basic concepts and methods of k-means clus-
tering to high school students with limited math and computing background (Wan 
et  al., 2020). It utilizes visual reasoning of face-based data visualization, which 
maps multidimensional data features to facial features, and facilitates the interpreta-
tion of patterns by arranging and overlaying faces to compare the similarity of data 
points within and between clusters.

K-means clustering (Steinley, 2006) is a commonly-used unsupervised ML algo-
rithm to partition multidimensional data into k groups based on the similarities 
between data points. It works in a few steps: (1) k data points are initially selected as 

Table 1  Goals of teacher learning in the ML4STEM PD program

Goals Definitions in ML Integration

TK Knowledge of ML concepts and methods (e.g., k-means clustering) that inform the ML-
enhanced learning tool as well as the skills of operating it.

TCK Knowledge of what subject matters or content activities can be enhanced or constrained by the 
ML-enhanced learning tool (e.g., using ML to discover how different environmental factors 
affect the development of organisms).

TPK Knowledge of what teaching and learning strategies can be supported by the ML-enhanced 
learning tool (e.g., using ML to support inquiry-based learning).

TPCK Knowledge of how to use the ML-enhanced learning tool via pedagogical strategies to instruct 
student learning in a specific content topic (e.g., using ML to scaffold inquiry-based learning 
activities that explore the relationships between environmental factors and the growth of 
organisms).

Beliefs Attitudes toward applying the ML-enhanced learning tool in subject teaching and student 
learning.
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centroids; (2) each data point in the rest of the dataset is assigned to the most similar 
centroid based on the distance between each data point and centroids; (3) the mean 
of each cluster is computed as the new centroid to represent the cluster; (4) repeat 
steps 2 - 3 until the optimal inter-cluster dissimilarities and intra-cluster similari-
ties are achieved. This work focuses on introducing k-means clustering as a discov-
ery tool for K-12 STEM teachers to utilize in their teaching. Therefore, the teaching 
affordances of other areas in ML will not be discussed.

In SmileyDiscovery, three ML components (Fig.  1) of k-means clustering are 
adopted for this study: (1) multidimensional data exploration (Fig. 1(a)) to facili-
tate the understanding of the multidimensional problem space; (2) similarity com-
putation which enables efficient visual comparison between data points to make 
sense of patterns (Fig. 1(b)) via shared features within a cluster (intra-cluster pat-
tern interpretation), or differentiating features between clusters (inter-cluster pattern 
interpretation); (3) pattern recognition (Fig.  1(c)) referring to manual/automatic 
k-means clustering and centroid generation that help learners to carry out investiga-
tion for previously raised questions or hypotheses, and may also lead to the concep-
tualization of new questions and hypotheses.

During a SmileyDiscovery learning activity about ecosystems, for multidimen-
sional data exploration, learners go through all the ecological factors involved in 
the dataset along with their definitions and generate customized data-face mapping 

Fig. 1  SmileyDiscovery ML components (from left to right): (a) components to facilitate multidimen-
sional data exploration (modify data-face mapping, explore value mapping, reveal data-face mapping in 
real-time); (b) components to facilitate pattern interpretation via similarity computation (pairwise com-
parison, intra-cluster pattern interpretation, inter-cluster pattern interpretation); (c) components to reveal 
patterns from data (manual clustering, generate centroid, automatic clustering which  applies k-means 
clustering to divide data into 4 clusters)
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by dragging and dropping data attributes onto facial features. They can also explore 
the data-face value mapping by interacting with sliders. As to similarity computa-
tion, learners move from the pairwise comparison (i.e., overlay and compare two 
data points of two representative field sites)  and the groupwise comparison (i.e., 
overlay and compare a group of data points of similar field sites), to comparing the 
cluster centroids. For pattern recognition, learners start with recognizing intra- and 
inter-cluster patterns from two manually generated clusters of field sites from a sub-
set of data points. After getting more familiar with clusters, centroids, and pattern 
interpretation, learners will recognize patterns automatically revealed by k-means 
clustering.

ML4STEM PD Framework

We constructed the ML4STEM PD program based on previous literature on sup-
porting teacher learning of technology integration. See Fig. 2 for the overall struc-
ture of the ML4STEM PD framework.

Teachers‑as‑Learners (TaL) Session

The goal of TaL session is to prepare teachers with an initial understanding of TK, 
TCK, and TPK as well as to promote their interest in applying ML as an SD tool in 
teaching. This section includes three main PD principles: modeling of technology 
use, hands-on learning, and reflection.

Fig. 2  The ML4STEM PD program includes three components: (1) The inner core indicates the two-ses-
sion experience that provides progressive scaffolding for efficient teacher learning, named Teachers-as-
Learners (TaL) and Teachers-as-Designers (TaD) sessions; (2) The crust is composed of five principles 
selected based on a literature review to fulfill the intended goals of teacher learning; and (3) The outer 
layer illustrates corresponding activities implemented to realize each principle
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Modeling of Technology Use

Modeling of technology use means the exemplar of how ML can be adapted to 
teaching STEM content. Lacking examples of K-12 learning activities that utilize 
ML as a discovery tool prevents teachers from understanding TCK and TPK as well 
as discourages teachers from applying them in classrooms. Thus, providing teach-
ers with specific cases of ML integration is helpful for teachers to see connections 
between ML and content activities as well as pedagogical practices.

We designed three learning activities informed by this principle for teach-
ers to develop an initial understanding of the application of ML components in 
STEM teaching. First, teachers observe the ML-empowered learning activities 
by watching a tutorial video. We expect teachers to establish a mindset of the 
integration of ML components with the instructions of scientific inquiry and 
with the content learning by watching the video. Then, teachers will engage in 
ML-empowered learning activities that serve to enhance their understanding of 
TCK and TPK.

One thing should be noticed, the exemplar of applying ML in STEM teaching 
should be carefully designed for ensuring a meaningful integration of ML (TK), 
instructions for supporting SD learning (PK), and STEM content (CK). In our study, 
we demonstrated the main SmileyDiscovery ML components to a science educator 
and worked together with the educator to develop three example SD learning activi-
ties. The main ML-empowered SD activities include three phases (Table 2).

Hands‑on Learning

Hands-on learning refers to learning ML integration in teaching via tactile activi-
ties. We designed engaging in ML-empowered learning activities, referring to 
walking through the pre-designed example activities, which aim to develop teach-
ers’ understanding of ML concepts and methods necessary for teaching with ML 
components (TK). As stated in the Related Work section, hands-on learning is criti-
cal for understanding ML technology for teachers with limited computing back-
grounds. Further, by trying out the pre-designed ML-empowered activities from 
a learner’s perspective, teachers are able to see what knowledge their students can 
develop through the same activity (TCK) and how lessons with scientific inquiry 
can be enhanced by ML methods to effectively support student learning (TPK).

Reflection

Reflection indicates the thinking activities in which teachers connect ML technolo-
gies with their own teaching experiences. The goal of incorporating this principle in 
the TaL session is to help teachers shift their understanding of ML integration from 
the perspectives of PD program designers to the knowledge situated in their teach-
ing backgrounds. We designed two activities informed by this principle to develop 
teachers’ understanding of TPK and TCK, respectively. One activity asks teachers 
to discuss the strengths and constraints of the ML-enhanced tool in teaching in 
group discussion to critically examine the connections between SmileyDiscovery 
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ML components and the means of teaching. The guided questions include “After 
experiencing the ML-empowered SD learning activity, what are your favorite fea-
tures and how they might help you in class teaching?”, “What features do you think 
should be improved for better supporting student scientific discovery and why?”, 
along with other questions. The other activity requires teachers to propose ML-
empowered SD learning activity ideas which can encourage them to creatively think 
about the applications of the ML components to their teaching subjects. We expect 
that through reflection teachers can go beyond the modeling use of the SmileyDis-
covery ML components and develop a transformative understanding by connecting 
these components to their own teaching practices.

Teachers‑as‑Designers (TaD) Session

The goal of the TaD session is to prepare teachers with an integrative understanding 
of TPCK as well as develop positive attitudes toward applying ML in teaching. The 
design of this session composes three principles: Learning by design, collaborative 
participation, and reflection.

Learning by Design

Learning by design refers to learning of ML integration by designing ML-empow-
ered learning activities. We asked teachers to design ML-empowered SD lesson 
plans for encouraging them to think about ML components, content topics, and 
instructions for scientific inquiry in an integrated manner (TPCK).

To support the design process, we created a design canvas (Fig.  3) by using 
LucidChart, a web-based diagram software allowing for online collaboration. The 
collaborative design canvas includes two core elements as scaffolding: a lesson 
plan design areas (Fig. 3 Area 1 & Area 3) informed by the backward design theory 
(Wiggins et al., 2005) and the established 5E model of scientific instruction (Bybee 
et  al., 2006) for structuring inquiry-based learning activities (Fig.  3 Area 2). The 
5E instruction model forms a full learning cycle comprising five cognitive states: 
Engage (assess students’ prior knowledge and helps students engage in a new con-
cept), Explore (provide students with a common base of activities within which cur-
rent concepts, processes, and skills are identified and conceptual change is facili-
tated), Explain (enable students to describe understanding and pose questions about 
the concepts they are exploring), Elaborate (challenge and extend students’ con-
ceptual understanding and skills) and Evaluate (assess students’ understanding and 
abilities and provides opportunities for teachers to evaluate student progress towards 
achieving the educational objectives). When designing the lesson plan, teachers are 
requested to map the SD learning activities guided by 5E instruction steps and then 
select corresponding SmileyDiscovery ML components to align with each instruc-
tion step. First, teachers will be guided to discuss and fill out the learning objectives 
and other related information in Area 1 (Fig. 3). Then they can drag and drop cards 
that are color-coded for different 5E instruction stages from Area 2 to Area 3 where 
each step in the lesson plan is illustrated. Major system components will be selected 
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from Area 4 and placed on the corresponding row in Area 5 to facilitate different 
instructional steps. If certain steps can not be fully achieved by the existing system 
components, teachers can type the limitations (Area 6) and desired features (Area 7).

Collaborative Participation

Collaborative participation refers to the involvement of experts who are responsible 
for the content, the pedagogy, and the technology in learning activities of using ML 
in teaching. We integrated this principle with the activity of designing ML-empow-
ered lesson plans in two kinds. First, we allow collaboration between peer teachers 
in design by requiring teachers with similar teaching grades and subjects to work in 
groups. As teachers know well of content and pedagogy knowledge of subject teach-
ing, the interactions between them can provide rich resources for individual teachers 
to make sense of how to use SmileyDiscovery ML components to support STEM 
teaching. Second, we encourage teachers to collaborate with researchers in design 
by assigning our researchers to each teacher group. We expect the participation of 
technical experts to support teachers’ understanding of ML concepts and of the 
features in the  SmileyDiscovery activity. Moreover, teacher-researcher interaction 

Fig. 3  The design canvas used in the TaD session with (1) Area 1: learning objectives and target learners 
based on the initial idea and the dataset selected; (2) Area 2&3: the 5E instruction model for teachers to 
develop each step in the lesson plan; (3) Area 4&5: draggable ML components in SmileyDiscovery for 
each step in the lesson plan; (4) Area 6&7: limitations of existing SmileyDiscovery components and new 
designs identified for steps from the lesson plan
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might produce creative use of the ML-enhanced tool in SD learning activities due to 
different participants’ perspectives.

Reflection

The goal of reflective activities is to encourage teachers to critically examine 
their attitudes toward applying ML as an SD learning tool in K-12 contexts after 
participating in the ML4STEM. We ask teachers to write reflection journals by 
which they can deeply explore their perceptions of ML technology and its use in 
STEM teaching. The guided questions to be addressed in journals are: (1) Do you 
think ML4STEM helps you develop ML knowledge related to utilizing Smiley-
Discovery components in STEM teaching? (2) Do you consider SmileyDiscovery 
as an effective tool for students learning STEM content? (3) How is it possible for 
you to integrate SmileyDiscovery components in your class?

Methods

We conducted a study to evaluate whether ML4STEM can help teachers develop 
an understanding of ML integration in STEM teaching, aiming to answer the fol-
lowing two research questions: (1) Can ML4STEM help teachers develop TK, 
TCK, TPK, TPCK? (2) Can ML4STEM help teachers develop beliefs about ML-
empowered STEM teaching?

Research Settings and Participants

We embedded the ML4STEM PD program in a teacher education course -Inte-
grating Technology with STEM teaching- which was a component of a Noyce 
Master Teacher Fellowship Program. Teachers registered for  this course for 
understanding various facets of how technology was and could be integrated into 
STEM classrooms. Eighteen teachers volunteered to be participants and signed 
the consent forms prior to the study. There were 7 male and 11 female teachers, 
between 25 and 54 years old, teaching math (N = 9) and science (N = 9) subjects. 
Participants teaching grade includes elementary school (N = 3), middle school 
(N = 7), and high school (N = 8). Regarding the previous experience with AI and 
ML, 6 participants (33.3%) had little experience while the rest of the participants 
(66.7%) had no experience.

Study Procedure

We implemented the two-session ML4STEM PD program in two consecutive 
weeks via the online platform Zoom. Each session lasted for 75 minutes due to 
the class time constraints.
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TaL: Teachers‑as‑Learners (Week 1)

TaL took place in the first class session which includes the following steps.

1. Introduction (10-min): The researchers introduced the overall procedures of the 
session.

2. Observing ML-Empowered Learning Activities (20-min): Eighteen teacher par-
ticipants were divided into four Zoom breakout rooms based on their teaching 
grade levels. Each group was with one researcher to offer technical support and 
manage time. Teachers watched a tutorial video that demonstrates the example 
of one pre-designed ML-empowered SD activity with the wine quality dataset 
(Cortez et al., 2009).

3. Engaging in ML-Empowered Learning Activities (30-min): Teachers indepen-
dently completed the pre-designed ML-empowered SD activity with the dynamic 
ecosystem dataset.

4. Discussing the Strengths and Constraints of the ML-enhanced tool in teaching 
(30-min): Teachers shared comments on the technology design and brainstormed 
how the system could be used to support their own ML-empowered SD learning, 
etc, with the guidance of a researcher. To ensure equal participation, researchers 
invited all participants to share their thoughts.

5. Proposing ML-Empowered SD Learning Activity Ideas: After the class, partici-
pants were asked to reflect on their learning by posting three SD learning activity 
ideas that could be implemented by SmileyDiscovery components on the Black-
board discussion forum.

TaD: Teachers‑as‑Designers (Week 2)

TaD was conducted in the second class session with the following steps.

1. Preparation (10-min): The researcher played a video tutorial to guide participants 
in accessing the platform and using the tool for collaboration in groups.

2. Collaboratively Designing ML-Empowered SD Lesson Plans (50-min): Each 
group discussed to select one SD learning activity design idea from the previ-
ously posted ideas. Each group collaboratively created a lesson plan by using the 
design canvas, with one researcher moderating the discussion.

3. Discussing the constraints and customization of the ML-enhanced tool in teach-
ing (25-min): The researcher guided a group discussion on limitations, potential 
improvement and customization of the ML components for the designed lesson 
plans.

4. In-Class Sharing (25-min): Each group shared out the designed lesson plan with 
all participants.

5. Writing reflection journals: After the class, teachers wrote a reflection journal to 
answer three prompts related to their learning experience about the PD program, 
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the effectiveness of ML in supporting SD learning, and the feasibility of ML 
integration into their own class.

Measures & Data Analysis

The measurement methods and data analysis are organized in this section by the 
order of TaL and TaD sessions. We defined the measure goal of each teacher’s learn-
ing outcome of ML4STEM by adapting the TPACK framework and SmileyDiscov-
ery ML components. A summary of the measures and the data collection timeline is 
shown in Fig. 4.

TaL Session

Technology Knowledge (TK) refers to the understanding of basic concepts and 
methods of k-means clustering.

We measured the learning gain of TK using pre- and post-study assessments 
administered prior to and after the TaL session. The assessments contain six open-
ended questions about concepts and methods of k-means clustering involved in the 
SmileyDiscovery activity, including multidimensional data exploration, the defini-
tion of similarity, similarity comparison, clustering process, centroid, and appropri-
ate k value (Wan et  al., 2020). Each question was evaluated on a 0-3 scale using 
a researcher-developed rubric, reaching a near-perfect inter-rater agreement (Lazar 
et  al., 2017)between two independent raters (Pre-study Cohen’s kappa = 0.85 and 
post-study Cohen’s kappa = 0.83). We applied z-test to check the data normality and 
paired t-test for the statistical difference in scores between pre- and post-assessment.

Technology content knowledge (TCK) refers to the understanding of applying 
SmileyDiscovery ML components to teach disciplinary content knowledge.

To measure the TCK teachers developed after the TaL session, we assessed the 
quality of teachers’ ML-empowered teaching ideas. They were collected from teach-
ers’ online posts on three teaching ideas that could be supported by SmileyDis-
covery ML components. Each posted idea was rated 0-2 scores according to three 

Fig. 4  The ML4STEM measures for different types of knowledge in the TPACK framework
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criteria: (1) involving a  multidimensional dataset (0.5pt); (2) involving clustering 
groups (0.5pt); (3) involving appropriate use of ML components for SD activities 
(1pt).

Two researchers independently coded all the ideas, validated the inter-rater reli-
ability (Cohen’s Kappa = 0.76), and computed the average of two ratings as the final 
score for each idea. We then assessed the quality of TCK for each teacher using a 
4-Likert scale: Excellent (all three posts were scored 2pts); Good (two posts were 
scored 2pts); Fair (only one post was scored 2pts); Poor (none of the posts were 
scored 2pts).

Technology pedagogical knowledge (TPK) refers to the understanding of apply-
ing ML components of SmileyDiscovery to scaffold inquiry-based pedagogy.

We applied content analysis (Lincoln & Guba, 1985) to measure the quality 
of TPK (i.e. teachers’ understanding of  the strengths and limitations of ML in SD 
teaching) by coding the focus group interview transcripts in three steps (Table 3).

We first identified related turns on strengths or constraints of using SmileyDis-
covery ML components for teaching and then identified its phase aligned with the 
inquiry-based learning framework (Pedaste et  al., 2015), an instruction model for 
SD teaching. Finally, we open coded SmileyDiscovery ML components mentioned 
by teachers, with three researchers reaching a consensus on the codes. By combin-
ing these three-level codes for each turn, we captured teachers’ perceptions of how 
a particular ML component facilitates or inhibits teaching in SD learning activities.

Beliefs refer to teachers’ attitudes toward ML integration in K-12 STEM class-
rooms regarding its effectiveness in supporting student learning and the feasibil-
ity of applying it to teaching. After TaL session, we assessed teachers’ interest 
change in teaching with ML by analyzing the pre and post self-efficacy survey 
administered before and after the TaL session. Given the limited duration of TaL 

Table 3  Codes and definitions for content analysis for teachers’ understanding of strengths and limita-
tions of SmileyDiscovery ML components in teaching

Step1:Is this turn talking about the strengths/constraints of SmileyDiscovery?
Strengths Teachers reported the benefits or strengths of using 

SmileyDiscovery ML components in teaching.
Constraints Teachers reported the constraints of using Smiley-

Discovery ML components in teaching.
Step2:Which phases of inquiry-based learning did teachers talk about in this turn?
Orientation Teachers talked about instructions related to 

familiarizing students with the background of the 
phenomena and the main variables.

Conceptualization Teachers talked about instructions related to sup-
porting students to propose questions for investi-
gation or generate testable hypotheses.

Investigation Teachers talked about instructions related to ena-
bling students to analyze data.

Conclusion Teachers talked about instructions related to draw-
ing conclusions based on investigations.

Step3:What ML components of SmileyDiscovery did teachers talk about in this turn?
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and the literature claimed attitude shifting often involves a long episode of learn-
ing (Kim et  al., 2013), we further measured teachers’ perspectives on applying 
ML in K-12 teaching after the TaD session by conducting thematic analysis of 
reflection journals.

We assessed teachers’ interest change in teaching with ML by using the pre 
and post ML self-efficacy survey with a 7-Likert scale containing five questions 
adapted from the existing self-efficacy survey for STEM Learning (Glynn et al., 
2009; Pintrich & de Groot, 1990). The data is normally distributed based on 
z-test; therefore a paired t-test was conducted to see if there was a statistically 
significant increase from pre- to post-assessment.

TaD Session

Technology pedagogical content knowledge (TPCK) refers to the understanding 
of designing a lesson plan which integrates the SmileyDiscovery ML compo-
nents, the instructions for SD learning, and a specific STEM content area.

The quality of ML-empowered SD lesson plans was assessed by a rubric 
adapted from an empirically validated literature that measures TPCK in TCK, 
TPK, and PCK dimensions (Harris et al., 2010). We first asked researchers of our 
teams with a solid ML and education background to review each of the designed 
lesson plans and developed standard versions of (1) The appropriate use of Smi-
leyDiscovery ML components that fulfill the chosen content activities (TCK). For 
example, one stage of group 4’s lesson plan aims to enable students to “explain 
the features shared by the groups of people with high, medium, and low risk of 
heart disease (after automatic clustering)” need to be supported by the ML com-
ponents: intra-cluster pattern interpretation, generated centroid, and inter-cluster 
pattern interpretation are required. (2) The appropriate use of ML components 
selected in the lesson plan to support SD activities via the 5E instructional model 
(TPK) (Table 4); and 3) the alignment of the 5E model and the content activities 
(PCK) (Bybee, 2009). Second, we rated the quality of the lesson plan on a 4-Lik-
ert scale by comparing it with the standard version of each dimension: 1) Excel-
lent (4pts): the lesson plan designed by teachers is fully aligned with the standard 
version; 2) Good (3pts): Mostly aligned with the standard version; (3) Fair (2pts): 
partially aligned with the standard version; (4) Poor (1pt): Not aligned with the 
standard version. Three researchers independently coded four lesson plans and 
the disagreements were resolved through discussion. The average score of TCK, 
TPK, and PCK dimensions of an ML-empowered lesson plan represents its qual-
ity of TPCK.

To establish a deep understanding of teachers’ beliefs about ML integration in 
K-12 STEM classrooms, we measured teachers’ perceptions of teaching with ML 
after TaD session. We conducted a thematic analysis of teachers’ reflection jour-
nals to understand teachers’ self-reported effectiveness of ML as a learning tool 
and the  feasibility of integrating ML in class teaching, respectively (Table  5). 
Two researchers independently coded, and validated the answers to the questions 
(Cohen’s kappa = 1 and 0.92) (Lazar et al., 2017).
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Post‑hoc Analysis

We further explored the influences of TK (post ML knowledge) on other learning 
outcomes (TCK and TPK and beliefs) by adopting correlation tests. In addition, we 
examined if there were teacher background differences (through three teaching grade 
levels and between two teaching subjects )in the learning outcomes (TK, TCK, TPK, 
and beliefs) via non-parametric tests.

Results

This section presents the results organized by the intended learning outcomes of the 
TaL and the TaD sessions accordingly.

TaL Session

Technology Knowledge (TK)

For the learning gain of TK, teachers’ scores increased in all the TK assessment 
questions, and the paired t-test results (Table  6) show a significant increase from 
pre- to post-test for five out of six questions. Teachers achieved a good understand-
ing (above 1.5 points) in post-test on three assessment questions about basic ML 
concepts of k-means clustering (e.g., nature of clustering, centroid).

Questions with relatively low post-test scores (below 1.5 points) are around 
more advanced ML concepts and methods (e.g., the algorithmic steps for clus-
tering, evaluating the appropriate k value), which were not introduced explicitly 
but embedded implicitly in the ML-empowered SD learning activities. For exam-
ple, while exploring the dataset for initial investigation, learners are scaffolded 

Table 6  Paired t-test results for learning gain of ML knoweledge (N = 18)

Statement Pre-survey Post-survey t sig.
M (SD) M (SD)

Q1. What does it mean to cluster a dataset? 1.33 (1.36) 2.47 (0.67) -2.91 .010 
Q2. What is the importance of similarity when clustering a 

dataset?
0.75 (1.19) 1.50 (1.19) -2.03 .058

Q3. What makes two data points similar or dissimilar? 0.31 (0.49) 1.50 (1.22) -4.26 <.001 
Q4. What is the center point of a group of data points? 0.89 (1.07) 1.75 (1.19) -2.67 .016 
Q5. Could you order the major steps for the k-means cluster-

ing algorithm?
0.97 (0.61) 1.56 (0.78) -3.58 .002 

Q6. Given two different numbers of groups for clustering the 
same dataset, how do you decide which number of groups 
gives better results?

0.25 (0.49) 1.14 (1.04) -4.05 <.001 
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to manually cluster similar data by prompts following the algorithmic steps for 
k-means clustering. In addition, the learning duration (30-min) for the TaL ses-
sion is very limited. These might explain why low post-test scores appeared in the 
more advanced questions.

Technology Content Knowledge (TCK)

To evaluate the quality of teaching ideas using ML, 44 ML-empowered SD teaching 
ideas are collected from 17 participants. After evaluating the quality of ideas, 15 
participants reached excellent (N = 2), good (N = 8) or fair (N = 5), and two dem-
onstrated poor understanding of TCK.

We noticed math teachers were less likely to gain a higher-level understanding 
of TCK than science teachers. Seven out of 9 science teachers were above the good 
understanding, while only 3 out of 8 math teachers achieved that level. Although 
most math teachers mentioned the advantages of clustering with subject matter (e.g., 
”clustering might help 5th graders to learn geometric plane shapes”), they were less 
likely to explicitly elaborate what features of the dataset will influence clustering 
results (e.g., specific features that differentiate clusters of rectangles and squares).

In addition, we explored the relationship between teachers’ TK and their TCK. 
By examining the mean scores of TK post-test of teachers with different TCK 
understanding levels (Fig. 5), we found that teachers with an excellent understand-
ing of TCK obtained the highest mean TK score as 13.25, while teachers with poor 
understanding scored the lowest. However, according to a Spearman correlation test, 
the association between the post TK and TCK was not statistically significant (p = 
.309).

Fig. 5  Descriptive of TCK associated with TK
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Technology Pedagogical Knowledge (TPK)

From the focus group interview in TaL, we identified 122 talk turns showing teach-
ers’ understanding of the strengths and limitations of ML in teaching (TPK). Teach-
ers mentioned strengths and constraints of applying SmileyDiscovery ML compo-
nents to instruct inquiry-based learning for 34 and 88 times respectively. Common 
themes were generated (Table 7).

A Kruskal-wallis test was performed to explore relationships between teach-
ers’ understanding of TPK and their teaching grade levels (Table  8). No statisti-
cally significant influence of teaching grade was found on the times of reported 
strengths. Rather, the number of constraints raised per person was significantly dif-
ferentiated between teaching grades (H(2) = 8.01, p = .018). Pairwise comparisons 
using Dunn’s test indicated that elementary teachers reported higher numbers of 

Table 7  Common themes in strengths and constraints of SmileyDiscovery components for instructing 
inquiry-based learning

Strengths Constraints

1. Empowering students to explore new phenom-
ena of their own interest 

1. Insufficient support for meaningful hypothesis 
generation 

Modify feature mapping: Allow students to select 
variables and relationships for further investiga-
tion

Modify feature mapping: Subjective selection of 
variables might lead to irrelevant results.

2. Supporting students in investigation and 
interpretation 

2. Cognitive overload in investigation and inter-
pretation 

Face visualization: Enable students to make sense 
of multidimensional data points

Face visualization: Not closely connected to STEM 
contexts which brings inconvenience in interpret-
ing data in realistic situations.

Manual clustering and automatic clustering: Expe-
dite students to experiment

3. Hard to discuss with peers if students are using 
different mapping relationships 

Generating centroids: Help students investigate the 
differences between clusters and reveal patterns

Modify feature mapping: Shape an independent 
learning environment for conducting investigation 
which limits students’ opportunities of discussing 
with peers.

Table 8  TPK differences in teacher background

Teacher background N Strengths Sig. Con-
straints

Sig.

M (SD) M (SD)

(Grade)
Elementary 3 2.67 (0.58) .148 8.00 (1.00) .018 
Middle 7 1.57 (1.13) 5.71 (2.43)
High 8 1.88 (1.36) 3.25 (1.67)
(Subject)
Math 9 1.89 (1.17) 1.00 6.44 (2.56) .008 
Science 9 1.89 (1.27) 3.33 (1.23)
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constraints than high school teachers (p = .023, adjusted using the Bonferroni cor-
rection). No other differences were statistically significant. This suggests that ele-
mentary teachers had more concerns about the implementing SmileyDiscovery ML 
components in teaching. According to the focus group interview, they considered 
that the system might not be conducive for young-age students who cannot process 
the large numerical values and facial features representing science variables.

Moreover, a Mann-Whitney test was conducted to understand how TPK differed 
between math and science teachers. Math teachers (Mdn = 7) mentioned a statisti-
cally higher number of constraints than science teachers (Mdn = 3) (U = 11.00, p = 
.008), while there was no difference in strengths reported (Table 8). This indicates 
math teachers had more concerns of using SmileyDiscovery ML components for 
teaching than science teachers.

Beliefs after TaL: Interest Change

Among five questions in pre- and post-test to measure teachers’ interest change of 
teaching with ML after TaL, there is a significant increase (t(17) = -2.40, p = .028) 
in “I find machine learning relevant to teaching STEM” (Table 9) indicating teach-
ers’ increasing awareness of connections between ML and their teaching subjects. 
Three items decrease without statistical significance.

The interest in applying ML in teaching was higher for science teachers (Mpre 
= 5.11, SDpre = 1.13; Mpost = 5.13, SDpost = 1.11) than math teachers (Mpre = 4.09, 
SDpre = 1.18; Mpost = 4.33, SDpost = 1.40) in both pre- and post-test. Regarding ques-
tion 2 in pre-test, math teachers (Mdn = 4) were significantly less curious about inte-
grating ML in STEM teaching than science teachers (Mdn = 5), according to the 
Mann-Whitney test (U = 68.50, p = .011).

Moreover, the interest in applying ML in teaching was higher for middle (Mpre 
= 4.77, SDpre = 1.00; Mpost = 5.29, SDpost = 1.30) and high school teachers (Mpre 
= 4.95, SDpre = 1.12; Mpost = 4.85, SDpost = 0.88) than elementary teachers (Mpre 
= 3.27, SDpre = 1.50; Mpost = 3.13, SDpost = 1.22) in both pre- and post-test. A 
Kruskal-Wallis test showed a statistical difference between teaching grades for ques-
tion 3 in post-test (H(2) = 6.38, p = .041). Dunn’s multiple comparison test indicated 
that elementary teachers scored significantly lower than high school after Bonferroni 
adjustment (p = .037). This meant that elementary teachers were less likely to find 
ML relevant for their STEM teaching compared to teachers of higher grade levels.

TaD Session

Technology Pedagogical Content Knowledge (TPCK)

We evaluated the quality of ML-empowered SD lesson plans collaboratively 
designed by teachers (Table 11). For a total of 1-4 scale, group 3 obtained the high-
est score of 3.83, and the other three groups’ score were above 3. The high quality 
indicates four groups demonstrated high TPCK in their lesson plans by integrating 
ML components, instructions for SD learning, and specific content areas. To provide 
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a clearer picture of how the lesson plans align the ML components well with the 
goal of content activities as well as the 5E model, we illustrate the quality of TCK 
and TPK dimensions respectively.

The quality of ML-empowered lesson plan to fulfill content activities (TCK) 
is evaluated based on the TCK rubrics. All four lesson plans exhibit a high level 
alignment between ”STEM learning content” and the corresponding learning 
objectives (M = 3.58, SD = 0.36). There are some common use cases for teach-
ers to deliver teaching content through ML components. With automatic clustering, 
teachers empower students to efficiently identify major categories based on simi-
larities and representatives of each category. In group 2’s lesson plan, students are 
required to synthesize the biological characteristics of different species through the 
ML-empowered bottom-up inductive discovery. Besides, all groups use the repre-
sentative data points to reduce the cognitive workload for students to investigate 
further with messy data. For example, group 1 guided students to explore the opti-
mal combination of different categories efficiently by only considering the repre-
sentative construction materials. Furthermore, group 3 innovatively used different 
mapping mechanisms between dataset features and facial features for students to 
observe the dataset and clustering results from different perspectives. By viewing a 
person’s income along with other different attributes in the clustering results, stu-
dents can get a very straightforward picture of which factor matters more.

For the quality of ML-empowered lesson plans to achieve inquiry-based 
learning (TPK), evaluation results yield that all groups had the average score 
above 3 (M = 3.56, SD = 0.30), meaning a relatively high alignment between the 
chosen ML components and the 5E instructional steps. Specifically, group 3 and 
group 4, consisting of high school teachers, showed higher alignment scores than 
the other two groups. The high scoring alignment elements are ”Elaborate” with 
its matching ML components - pattern interpretation supported by similarity com-
putation features. For example, all four groups supported ”Elaborate” instructional 
step with intra- or inter-cluster pattern interpretation to help students answer the 
initial inquiry.

The common misalignment of the components lies between the “Explore” and 
“Explain” steps with its corresponding ML components, such as comparing the 
facial feature pairwise or groupwise to identify the similarity/difference with/
between groups. Four groups either missed related system components supporting 
“Explain” the pattern, or misplaced the clustering in “Explain”. For example, group 
2 supported the “Explain” step with “manual clustering” and “automatic clustering” 
components, without further interpretation with “pairwise comparison”, which can-
not support their instructional goal of “defining certain groups of the organisms that 
are similar”. This might be due to teachers’ lack of deeper understanding of how dif-
ferent clustering results should be analyzed differently.

Beliefs after TaD: Perception

To show teachers’ perceptions of teaching with ML after the PD program, 
Table  10 provides an overview of teachers’ beliefs about integrating ML with 
teaching reported after the TaD session. Thirteen out of 17 teachers valued ML’s 
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effectiveness on SD learning for three aspects. First, ML can be used to help 
students solve scientific problems and learn concepts of different STEM subjects 
(N = 9). Second, the integration of ML with teaching prepares students for an 
innovative way of data exploration, analysis and interpretation, which are key 
skills for students to develop according to the Next Generation Science standards 
(State, 2016) (N = 10). Third, the ML-empowered learning experience is novel 
and interesting, which can motivate students to be actively involved in learning 
activities (N = 3). Two math teachers and one science teacher considered ML as 
less effective. Among them, the elementary school math teacher reported a great 
deal of scaffolding and time is required to familiarize students with the ML tool 
in a constructive manner, which, however, “seemed like a lot of work for very 
little pay off”.

For the feasibility of applying ML in their own classrooms, six participants 
explicitly expressed their willingness to integrate ML with teaching in future 
(Very likely), even though some of them recognized the challenges for prepar-
ing students to navigate with ML technology smoothly. Another six participants 
were somewhat likely to use ML in their teaching, showing their strong interest 
in implementing ML in class, but insufficient knowledge hampered them to do 
so. Nevertheless, this group of teachers were motivated to experience more ML 
methods and learn more about how to design ML-empowered learning activities. 
Three teachers were somewhat unlikely to apply ML in teaching. One of them 
was math teachers, explaining that ML methods were not adaptive to his teach-
ing; while the other two were science teachers, with the concern that it was too 
complicated for lower-level grade students to understand the transferability of 
facial features and variables.

Additionally, five teachers expressed that their attitudes toward learning and 
using ML for teaching changed after participating in the TaD session. For exam-
ple, one participant wrote “for this module, I will be completely honest that I 
was a bit overwhelmed with the SmileyDiscovery activity at first. However, after 
this past class (TaD), I will say that creating a scenario and designing the activ-
ity really helped me in understanding”.

We further explored the influences of TK on teachers’ perceptions. We 
applied the Spearman’s correlation and found a significant relationship between 
the post ML knowledge and the feasibility of applying ML in classrooms, rs (16) 

Table 10  Teachers’ perceptions of ML integration reported in reflection journal

Teachers’ self-reported effectiveness of ML in supporting SD learning (N = 17)
Effective Less effective Not respond
13 3 1
Teachers’ self-reported feasibility to apply ML in their class (N = 17)
Very likely Somewhat likely Somewhat unlikely Very unlikely Not respond
6 6 3 1 1
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= 0.84, p <.001. This suggests the better teachers develop TK, the stronger will-
ingness of teachers to integrate ML in class teaching.

Discussion

The results confirmed the overall effectiveness of the ML4STEM PD program in 
supporting key aspects of learning goals for integrating ML into K-12 STEM class-
rooms, including TK, TCK, TPK, and TPCK. ML4STEM PD program promotes 
belief change, represented by the positive development for both self-efficacy of 
understanding ML concepts and methods (TaL session) and perspective of integrat-
ing ML in teaching (TaD session).

Emerging themes connect back to our design principles: (1) Values of learning 
by design and collaborative participation; (2) Effectiveness of hands-on learning, (3) 
Necessity of extended learning time; (4) Recommendations for modeling of technol-
ogy use; (5) Teacher background differences.

Values of Learning by Design and Collaborative Participation

Similar to the previous study of technology integration (Koehler & Mishra, 2005a), 
designing the ML -empowered SD learning activities plays a vital role in helping 
teachers develop an integrated understanding of TPCK. A quote from the reflec-
tion journal of a middle school math teacher is representative: “Having the oppor-
tunity to design the lesson plan from the bottom-up was very influential in my 
understanding.”

Also, our study supports the positive effects of collaborative participation in 
learning activity design, echoed with the previous research revealing that teachers’ 
anxiety of using the new educational tool could be reduced through designing learn-
ing activities with peers (Angeli & Valanides, 2009; Voogt et al., 2015). One partici-
pant mentioned that “When we engaged in the co-design workshop, I was nervous 
that we were going to have a hard time finding a topic that fits into the program, 
but the fact that five different groups designed a learning activity at varying grade 
levels and a variety of concepts, it showed me that there is potential for many ML-
empowered learning activities to be created.” Another participant pointed out in the 
reflection journal: “I liked the collaborative aspect of having teachers with the same 
backgrounds together. It is easy for us to communicate with and understand each 
other and have a common goal”. These suggest the importance of grouping teachers 
with similar grade levels or subjects together to form a professional learner commu-
nity when learning ML integration in class.

Effectiveness of Hands‑on Learning

Compared to other traditional educational technologies, gaining knowledge about 
the integration of ML-enhanced learning tools is more challenging, especially for 
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teachers without computing backgrounds, due to the complexity and abstractness of 
ML concepts. Our study demonstrates the effectiveness of hands-on learning activi-
ties on supporting novice teacher learners to develop a moderate understanding of 
ML technologies (TK), evident by significant learning gains from the pre to post ML 
knowledge tests. This is also supported by teachers’ feedback in reflection journals, 
saying that interacting with SmileyDiscovery activity allowed them to make sense 
of k-means clustering. Hands-on learning opportunities through interacting with 
ML-empowered SD activities helped lower the barrier of teachers’ TK development 
(Tearle & Golde, 2008).

Necessity of Extended Learning Time

We also found that the development of teachers’ TK remains at a moderate level. 
Nearly half of teachers reported in reflection journals that they could not go beyond 
basic understanding to know the algorithm, and they were unclear about how the 
computer works for the clustering or the mathematical abstraction of the algorithm 
through the system. Teacher’s belief also showed that insufficient time in TaL for 
teachers to fully digest ML concepts and relate them to their in-class teaching, as 
a teacher reported in reflection journal after the TaD session that “ML is one of 
those areas where there would have to be great deals of scaffolding and time in order 
to have students be able to use it in a constructive manner.” Although learning the 
algorithm is not the goal of the PD program, the continuous demand of expand-
ing teachers’ technological knowledge (TK) needs to be supported in the future PD 
program design. This is because TK plays a critical role in teacher learning in ML 
contexts, influencing the development of an integrated understanding of TPCK, and 
impacting teachers’ belief about applying ML into their own class, as discovered 
in the post-hoc analysis. One potential reason that impedes teachers from digesting 
the TK could be the limited time (30-min) for ML-empowered SD learning experi-
ence in TaL session. As reported by reflection journals, teachers felt overwhelmed 
by the information in the first session, and they needed “really dive into what Smi-
leyDiscovery ML components are capable of and implement the system to target at 
student level.” While recognizing the importance of extensive duration for PD (Kim 
et  al., 2013; Mouza, 2009), we only created two sessions for the ML4STEM, 75 
minutes for each, due to class time constraints and course planning. Future PD pro-
gram designers should offer adequate learning duration for teachers to gain an in-
depth understanding of ML. Also, more hands-on informed activities (e.g., embod-
ied interaction design for teachers’ ML learning (Opel et  al., 2019) and advanced 
ML components (e.g., automatic clustering, inter-cluster pattern interpretation) can 
be provided to support teacher learning.

Recommendations for Modeling of Technology Use

The principle, modeling of technology use, provides teachers opportunities to under-
stand TPCK related to ML integration at an earlier stage. This is evident by the inte-
grative mechanisms of TPCK within the ML-empowered SD lesson plans designed 
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by teachers are similar to the example activities provided for them. Given teachers 
lacking the mental structure (Bruner et al., 1966) of such knowledge, experiencing 
an existing exemplar helps them for schema acquisition (Bruner et al., 1966) which 
is important for further sense-making activities. To better support teacher learning, 
we suggest two recommendations of applying this principle for future ML4STEM 
PD program design.

First, provide diverse examples of ML-empowered learning activity to match 
teachers’ subjects and grade levels. This is because teachers who find the exemplar 
activities resonating with their teaching practices can better understand using ML 
in teaching. For example, a science teacher wrote in the reflection journal: “The 
activity that I enjoyed most was the Ecology and Climate module. With my back-
ground in Biology, I was able to relate a lot of the variables and vocabulary that 
were used”. In comparison, our study’s math teachers encountered more challenges 
in developing an integrated understanding of TPCK, given that no math contents 
were involved in the three pre-designed learning activities. Similarly, the hesita-
tion of applying ML components to elementary school might be due to the same 
reason. Said by an elementary teacher: “I think I would need an actual example of 
how it (SmileyDiscovery) might be used with primary (school) students.” Given the 
preliminary stage of the study, we only included pre-designed activities on selected 
STEM topics. While findings show that most STEM teachers were able to assimilate 
the pre-designed activities’ structures and transfer them to different content areas, a 
wider range of customized exemplars may be needed to better support teachers with 
diverse teaching backgrounds (e.g., math).

Second, provide diverse examples of the mechanisms integrating ML as SD tools 
in STEM teaching. Our study presented teachers with three pre-designed learning 
activities which, in effect, share the structure of the TPCK integration. Because of 
that, teachers tended to follow it and were “not comfortable breaking away from 
the certain flow quite yet.” This resulted in the structure of four ML-empowered 
lesson plans, created by teachers, were consistent with the pre-designed learn-
ing examples. As a teacher mentioned in the reflection journal: “The creativity of 
designing the lesson plan can be stifled by the exemplar activities.” According to the 
theory of improvisation, establishing and expanding repertoire of TPCK (i.e., pat-
terns of TPCK archived in the long-term memory) is one of the essential cognitive 
processes necessary for stimulating improvisational acts (Biasutti, 2017). Thus, we 
suggest that future PD program designers offer teachers various structures of TPCK 
to inspire teachers’ creativity.

Teacher Background Differences

Teaching with ML in Mathematics

Compared with science teachers, K-12 math teachers possessed more concerns 
about applying ML as a teaching tool (TPK), had a lower understanding of inte-
grating ML with content activities (TCK), and showed lower interest in imple-
menting ML in their classes (Beliefs). One reason for such differences is the lack 
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of considerations of math contents within the ML4STEM PD program design. 
As stated above, teachers’ initial understanding of the TPCK is largely influ-
enced by the exemplar learning activities provided for them. Since no modelling 
of the applications in mathematics was offered, math teachers found it difficult 
developing knowledge related to using ML to support students learning math-
ematics. As a result, they were less likely than science teachers to consider ML 
as an effective learning tool to be implemented in K-12 contexts.

Another potential reason might be the differences in teachers’ conceptions 
of mathematics and science. The focus group and reflection journals reveal an 
opinion that “the SmileyDiscovery ML components seem not to adapt to math 
contents.” Informed by such ML methods as similarity computation and pattern 
recognition, SmileyDiscovery ML components are conducive for supporting 
activities like generating hypotheses, conducting investigations, analyzing, and 
interpreting data. Such practices, in effect, are aligned perfectly with K-12 sci-
ence education standards (State, 2016). While we are not suggesting these two 
disciplines are distinguished, they contain some differences in school education 
from teachers’ perspectives. A previous study reported that math teachers highly 
embraced rationalism while science teachers ranked empiricism first when dis-
cussing the values of teaching subjects the in K-12 school curriculum (Bishop 
et al., 2006). Such a difference in the conceptions of subjects teaching, in effect, 
can influence their willingness to engage in educational innovations (Andersen 
& Krogh, 2010). If teachers find the new ways of teaching do not match with 
their subject-specific flavors, they would be reluctant to use them. This is not to 
say that ML as a discovery tool does not fit K-12 mathematics in general. Since 
few studies have explored this integration, future efforts can be made through 
the cooperation between K-12 math teachers and computer science researchers.

Teaching with ML in Elementary Schools

In contrast with middle and high school teachers, elementary teachers were 
more critical about using ML as a teaching tool (TPK) and less interested in 
applying ML for their class teaching (Beliefs). Nevertheless, they acknowledged 
the strengths of ML methods in supporting student learning while showing 
more concerns about the interactive design of the ML-enhanced learning tool. 
According to the focus group interview, elementary teachers considered that 
symbolic mapping and relational reasoning (i.e., using facial features as ana-
logs of variables) can confuse young students who are still at Piagetian’s con-
crete thinking stage (Cantu & Herron, 1978). This concern, however, is based on 
teachers’ prior teaching experience and assumptions of their students’ cognitive 
levels, which can be mitigated when seeing the increased learning performance 
of students brought by the implementation of new educational innovations. 
According to (Guskey, 2002), teachers’ beliefs might not occur with the PD per 
se but occur after successfully implementing new practices in classrooms. A 
prior study showed that symbolic mapping and relational reasoning were cogni-
tive processes enhanced by children’s early literacy and mathematics (Collins & 
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Laski, 2019), which indicates the future research direction to implement ML-
empowered SD learning for young kids.

Limitations

This study contains several limitations. First, our study held a small sample size 
(N = 18), which constrains statistical power and generalizability of the findings to 
make inferences for a broader context (Button et al., 2013).Therefore, we have to be 
careful when interpreting the findings, and the preliminary results are informative 
for future studies involving larger sample sizes with longer PD sessions. Second, 
the exposure for teachers to learn the knowledge of teaching with ML is short. On 
the one hand, teachers can not fully understand TPACK; on the other hand, it pro-
vides fewer insights on the developmental trajectory of teachers’ learning experi-
ences. Thus, this requires future researchers to extend the implementation duration 
of ML4STEM PD program, providing teachers with more chances to engage in the 
learning activities actively. Third, the measures of learning outcomes in this study 
are inconsistent across two sessions. For example, we assessed TCK and TPK at 
the individual level for the first session while at the group level for the second ses-
sion. Also, when analyzing teachers’ beliefs, we applied pre and post tests for teach-
ers’ interest change after the first session while used thematic analysis of reflection 
journals for teachers’ perceptions after the second session. Fourth, this study only 
employed one ML-enhanced learning environment to scaffold the ML4STEM PD 
framework, lacking other ML platforms as supplementary to provide more solid evi-
dence for confirming the generalizability of the ML4STEM PD framework. Future 
researchers might consider implementing it to support the learning of ML integra-
tion by using alternative platforms, such as KNIME, which enables SD activities 
with a broad range of ML methods (Berthold et al., 2009).

Conclusion

To empower K-12 teachers to utilize ML advances in their STEM teaching, we pro-
pose ML4STEM, a PD program grounded in TPACK framework (Mishra & Koe-
hler, 2006) for teachers’ effective technology integration. Major design principles 
utilized include learning by design, collaborative participation, and hands-on learn-
ing. An evaluation study with 18 K-12 STEM teachers confirmed the effectiveness 
of ML4STEM to progressively develop teachers’ knowledge and interest in applying 
ML as a pedagogical tool for content teaching. Also, we found that middle & high 
school teachers and science teachers encountered less constraints and developed 
higher interest than elementary and math teachers. In the end, a list of design impli-
cations of PD in ML integration is summarized.
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