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ABSTRACT
Curiosity is a critical skill that spurs learning, but is often found to
declinewith age and schooling. Recent research has shown that peer
interaction may serve a special role in inducing curiosity through
increased uncertainty and conceptual conflicts, since peers have
similar authority in knowledge. For a virtual agent to stimulate
curiosity, it should be able to generate curiosity-eliciting verbal
behaviors such as hypothesis verbalization and argumentation,
in the manner that simulates peer-like cognitive and behavioral
abilities. In this paper, we design and implement a virtual peer that
can carry out key curiosity-eliciting science talk during a dialog-
based multi-party board game. We propose a child-centered and
data-driven approach to simulate the latent reasoning process of
young children and age-appropriate language during open-ended
game play. In particular, we use a combination of child knowledge-
graph construction and child-child interaction driven modeling to
generate game appropriate behaviors that are compatible with 9-14
year old children. Encouraging human evaluation of the generated
behaviors and generalizability of the generation framework to other
tasks opens up new directions in incorporating open-endedness
and science talk in virtual agents that will make them truly play a
peer role in learning.
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1 INTRODUCTION
Were you one of those children who took apart clocks to see how
they work? Did you have classmates that built computers from
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scratch? Such information seeking behaviors are often motivated
by curiosity. Following prior work, we define curiosity as the strong
desire to learn or know more about something or someone. Cu-
riosity often develops in response to external stimuli that evoke
knowledge gap and knowledge dissonance [25]. It is one of the
important social-emotional learning skill that leads to exploratory
knowledge seeking [1]. Recent studies show that peer interactions
exert a stronger influence on curiosity than one’s own behaviors,
during small group learning among 5th and 6th graders [45]. In
particular, behaviors that elicit uncertainty and conceptual conflict
amongst peers, such as question asking, hypothesis verbalization,
argumentation and justification, tend to evoke curiosity not only
in one individual, but across several group members [37].

Game play provides special opportunities to assess and support
curiosity through a safe and playful environment to explore and ex-
perience uncertainty, in both individual [23] and group [50] setting.
The scaffolding for "social connectedness and meaningful partici-
pation" that a game provides [20] may also makes it an engaging
activity for virtual peers that exhibit the appearance and ability of
a real child. Peer scaffolding has been shown to support positive
development in children for curiosity [17], growth of mind [38] and
social interaction [6].

In this work, we design and develop a virtual peer to scaffold
curiosity in the context of a custom-designed collaborative board
game called Outbreak [50]. The game incorporates the open-ended
and investigative nature of curiosity by asking players to explore
unknown threats through open-ended question asking and discus-
sion, and then to decide a set of skill cards to use to conquer these
threats. To engage in the game play as a competent collaborator, the
virtual child needs to make real-time reasoning that processes both
spontaneous peer interactions (e.g. question asking, argumenta-
tion, hypothesis verbalization) and dynamic game state updates (e.g.
drawing cards). A limited repertoire of scripted conversation moves
or Wizard-of-Oz manipulation would limit the agent’s ability to
produce open-ended, peer-like and spontaneous-sounding verbal
behaviors during discussion.

In particular, there are two challenges for a virtual peer to fulfill
curiosity-stimulating social scaffoldings. First, the virtual peer has
to be capable of engaging in behaviors that provide open-ended
possibilities to evoke uncertainty and knowledge gap [32], such as
creating new hypotheses or arguing for alternate viewpoints. Open-
ended possibilities create opportunities for others to respond to
uncertainty and alternatives andmay in turn lead to new knowledge
gap and dissonance. Second, the virtual peer has to demonstrate
equal abilities, since children tend to challenge and compare the
correctness of one another’s ideas, but may accept adults’ ideas
unthinkingly due to their high knowledge authority [40].
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Data and machine learning driven generation of verbal behav-
iors through reasoning over social interactions and current game
state is a more adaptive solution for the spontaneous generation
of behaviors with peer-like characteristics. In the current work,
we develop a fully data-driven technique for the generation of
key curiosity-inducing behaviors. We generate verbal behaviors
to be game-context related and peer-targeted. More specifically,
we construct a distributional semantic knowledge representation
for the target age-group, that the virtual agent can query based
on the contextual game information. We leverage the use of large,
public-domain multimedia content available to children for knowl-
edge construction. This affords the agent the capability to generate
diverse responses such as new hypotheses and alternatives not
encountered in the limited number of recorded game play interac-
tions. In order to generate curiosity related behaviors, we identify
important semantic and syntactic patterns that are triggered when
these behaviors are displayed by children during game-play. These
patterns, along with the constructed knowledge representation, are
used to plan the content for context appropriate behaviors. We also
extract language motifs from game-play corpus as templates to
generate the actual natural language utterances for the peer virtual
player. For every step in this generation process that involves data
manipulation , we use human evaluation to measure performance
of data-driven techniques, thus ensuring that game and context ap-
propriate behaviors are generated. We discuss the generalizability
of the child-centric modeling approach and the behavior generation
framework to other collaborative tasks that require open-ended
and creative peer interactions.

The main contributions of this paper are two-fold:
(1) We present a child-centered data-driven approach to simu-

late peer-like cognitive and behavioral abilities during open-
ended conversation.

(2) We applied the approach in developing a virtual peer that
carries out peer-targeted curiosity-eliciting science talk in a
multi-party game play.

2 RELATEDWORK
Virtual Peers with co-equal abilities Peers are individuals of
similar age, ability, knowledge, experience and social status [19, 39].
While symmetric age and social status have been generally applied
in virtual peers, most of them hold asymmetric knowledge and
ability compared to the real child, such as tutors [6], teachable tu-
tees [30], and supportive companions [17, 38]. There are only a few
exceptions where the virtual peer is intended to closely simulate
child ability. Sam is a virtual peer who can engage in collabora-
tive storytelling and is controlled by young children with autism
[49] and Alex is a culturally-authentic virtual peer who engages a
child in science talk while switching dialects [8]. Both virtual peers
simulate peer-like behaviors but have limited ability to engage in
behaviors with open-ended possibilities as their verbal behaviors
are pre-scripted or extracted from the limited child-child interaction
corpus.

Adapting Cognitive Architectures for Children Cognitive
architectures are the core frameworks behind the reasoning mod-
ules in virtual agents. Most cognitive architectures focus on sim-
ulating optimal intelligence. There are only a few studies that in-
vestigate cognitive architecture through the lens of development

and individual differences [24, 33]. They identify three main cogni-
tive factors that influence human intelligence - knowledge change,
memory and processing capacity, and strategy choice with experi-
ence. While there is a lack of precise understanding of the number
of knowledge structures that can be activated and processed at one
time for different developmental stages, media exposure is consid-
ered one of the main sources for children’s knowledge acquisition
[44], and data-driven behavior modeling has provided a way to
simulate non-optimal cognitive processes of strategy choice and
language generation in scenarios such as tutor-tutee interaction
[36], and previously mentioned child-child interaction in science
discovery and storytelling.

Semantic Memory, Knowledge Representation and Rea-
soning Semantic memory stores the concepts required for rea-
soning by the virtual agent. Semantic memory has traditionally
been represented as a semantic graph consisting of nodes (concepts
or terms) and edges(relations) [29]. There are several manually
curated or automatically generated knowledge bases such as Word-
Net [14] and ConceptNet [31] etc., that are directly incorporated
into a virtual agent dialogue manager for reasoning and next ut-
terance formulation [43]. However, these knowledge bases contain
factual information and common sense associations (such as USA-
President-Trump) that are very generic for game play and are closer
to an adult’s semantic memory. Distributional models of semantic
memory [5] use text corpus-based co-occurrence models like LSA
[28] or the more recent Word2Vec [35] to create a semantic vector
space in which different concepts(terms) from the corpus reside.
Such techniques have previously been used by [22, 52] to project
terms into vector spaces using labeled data and supervised machine
learning.

Reasoning over the knowledge graph involves making inferences
based on semantic relations among various concepts. Most knowl-
edge bases like WordNet are ontologies or taxonomies that support
semantic relations such as is a, type of, synonyms, antonyms, ways
to, causes for etc. Some works have looked at automatic relation
extraction. Automated biological hypothesis generation OpenCog
extracts relations automatically from free text [16]. Most automatic
relation extraction methods like these use dependency parsing
to extract underlying relations. For instance, [12] design a semi-
supervised method for extracting protein-protein relations based
on dependency parse trees.

Natural Language Generation The generation of natural lan-
guage utterances requires the construction of a child-centered lan-
guage model to capture common lexical patterns children use while
talking to peers. Due to a lack of sufficient child-child data, statistical
pattern-mining based approaches are a more feasible strategy. [7]
extract response structures from previously annotated sequences
to generate factoid questions. [11] investigate and extract dialogue
patterns from human-human interactions to be used by a software
agent to interact with real humans . [41] construct sentence pat-
terns in the form of template sequences of parts-of-speech and a
simple lexicon of words to populate these templates.

3 METHOD
In this work, we build a virtual peer that can generate key curiosity-
inducing behaviors to elicit uncertainty and conceptual conflict in
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Figure 1: Outbreak game play recording and game compo-
nents (Threat cards, question templates, Skill cards)

group members. We used a child-centered modeling approach to
enable the virtual peer to think and behave like a competent 9-14
year old child in a conversation-based collaborative game called
Outbreak [50]. Outbreak is a question-asking and discussion driven
board game for a group of two to five players to collaboratively
investigate hidden threats in a series of broken science labs (threats
such as haunted by a ghost, leaking chemicals etc.). Each time the
players enter a new room, they ask questions using provided ques-
tion templates to the game master (e.g. What happens if..., Is the
room...) for up to two minutes, to uncover unknown threats. Players
then enter the discussion phase when they have to collaboratively
decide the right resource cards with skills needed to conquer the
threats. The 7 skills in Outbreak are fight, love animal, hack (comput-
ers, software), block, run fast, friend and see. We chose Outbreak as
the study activity because it provides an engaging and exploratory
experience with sustained level of uncertainty, and allows the vir-
tual peer to carry out key curiosity-inducing social scaffoldings. An
example game scenario is depicted in Figure 1

Outbreak Data Collection. We collected child-child interaction
data of 10 groups of 3-4 players, 9-14 years old (30 participants
in total with 13 female participants) playing Outbreak in a con-
trolled lab setup. We recruited from local public and charter schools,
and a YMCA community center in a historically under-resourced
neighborhood. All participants’ parents gave consent, and partici-
pants gave minor assent. The confederate experimenter first runs a
scripted practice round to explain the game rules while also playing
as the game master. Participants then play the Outbreak game for
either 40 minutes or until they cover all rooms and reach the end of
the game. We used four camcorder recorders, four webcam devices
and a fisheye camera to record the video data including the front
face and group view of each participant and a top-down view of the
table and game board. The audio data is recorded using lapel mi-
crophone attached to the collar of each participant. We transcribed
and annotated a convenience sample of the first six groups of the
game play (3630 clauses in total).

We used two human annotators to annotate every clause in
our corpus for three key verbal behaviors that have been corre-
lated with increased curiosity - Justification, Argumentation and

Figure 2: Data-driven System Architecture of the Outbreak
Virtual Peer

Hypothesis Verbalization [37]. Justification refers to showing that
somebody or something is right or reasonable. Argument is an
exchange of diverging or opposite views among multiple people, in-
cluding providing reasons to change people‘s positions. Hypothesis
Verbalization refers to expressing different possibilities or theories
that explain something that happened, often by giving a relation
between two or more variables. Inter rater reliability (Krippendorf’s
alpha) for each behavior annotation was above 0.7. Additionally,
we also annotate for game resources such as question templates,
skill cards and possible threats (termed as keywords) that players
refer to in these clauses.

We describe the cognitive architecture of the virtual peer (de-
picted in Figure 2), that refers to key components of general cogni-
tive architecture proposed in ACT-R [4], Soar [27] and CLARION
[48] along with a tier for the data-driven adaptation. The cognitive
architecture includes the following modules (1) sensing - updates
game status by tracking the game elements on the table using
marker-based computer vision technology; (2) reasoning - plans
and selects verbal behaviors to engage in game play and provide
open-ended possibilities for evoking curiosity ; (3) behavior gener-
ation - realize the verbal behaviors through text-to-speech (TTS)
using Amazon Polly, and associated non-verbal behaviors using
Behavior Expression Animation Toolkit (BEAT) [9] and Unity game
engine. In this paper, we focus on describing the reasoning module
that enables the generation of required game behaviors, namely
question asking using question templates and suggesting a skill
or card during discussion. We additionally enable reasoning for
and generation of curiosity-inducing verbal behaviors such as ar-
guments and hypothesis verbalization. We explain pertinent parts
of the reasoning module in detail.

Semantic and Procedural Memory. Short-term memory consists
of the agent’s current belief state for the game, the next chosen
behavior and utterance. Semantic memory encodes word mean-
ings, facts, concepts, and general world knowledge that agent uses
to reason about the game, while procedural memory maintains
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rules required for planning the content, natural language form and
selection criteria of different verbal behaviors.

Processing Unit. The processing unit refers to the key reasoning
steps over the components of the cognitive architecture. The corre-
sponding processing unit in our cognitive architecture includes the
following steps:

(1) Game Belief Updating - updates the virtual peer’s belief of
the game status; For example, Player 1 asks the game master:
"Is there a robot?" and the game master responds: "Yes". The
game belief updating module will register the question and
answer pair, and inquire the game rules and child knowledge
base to update the possible set of skills that associate with
the keyword "robot" (e.g. fight, be friend, block)

(2) Behavior Content Planning - Plans for the content of
game-play behaviors and curiosity-inducing verbal behav-
iors, according to the game belief updates. For example, in
the discussion phase, since the game master has clarified that
the room has a robot, Player 1 suggests: "I think we should
use fight because she said there is a robot". The virtual peer
can provide alternative opinion through argument: "Wait,
we will need hack because the robot could be broken", or
hypothesis generation: "What if the robot is not dangerous?
It may be lonely".

(3) Behavior Selection - Selects appropriate verbal behaviors
to generate that fulfill the purpose of game play with an
emphasis on curiosity-induction. For example, statistically,
children may be more likely to make arguments following
another person’s suggestion than new hypotheses, so the
generated argument behavior is chosen more often than the
hypothesis.

The game belief update and behavior planning are driven by a
child knowledge graph, a distributional representation of semantic
memory that is generated using child-centered media data and
adapted for the Outbreak task into an associative mapping between
skills and different keywords.

3.1 Encoding Children’s Semantic Knowledge
As previously described, the semantic memory (referred to as the
knowledge graph in our framework) connects entities using rela-
tions that represent a shared encoding of their meaning. A knowl-
edge graph encodes the relative meaning of concepts accrued by
humans from repeated episodic experiences. Hence, we begin with
the construction of a general child-centered knowledge graph and
develop strategies to traverse this graph.

3.1.1 Collecting Auxiliary Dataset. Our existing child-child game-
play corpus consisting of real children’s conversations can be pro-
hibitive to the construction of a knowledge graph due to a) small
size, and b) children using repeated skills and keywords across
different game sessions. We augment this dataset with larger and
more generic textual data that contains the knowledge that real
children of the target age group are exposed to [44] while reading
books and watching videos. This data acts as proxy for knowledge
children acquire from day-to-day experiences and is able to en-
code conceptual associations that a human peer is likely to make
in game play. We reviewed articles and surveys about children’s
media usage patterns and preferences for specific genres. [42] find

that about 84% of children in their study had access to home In-
ternet and 81% of them watched videos on the Internet, indicating
that online videos have become more popular among the youth as
a source of information and entertainment. Besides, e-books also
attract a substantial number of children. Along the dimension of
genre, we explored the kinds of information that children are most
interested in. [46] conducted a survey of reading preferences for
children aged 2-18. Their results show that the top 3 categories that
children are most interested in are animals, science, and sports. [10]
review the authorized reading materials. Their study reveals that
boys and girls equally like fictions which contain horror, humor
and adventure. Based on the above review of research and surveys,
we collected text data covering popular media types (e-books, video
transcripts and board game rule books) and genres (like fantasy,
history, science and so on)1. We also included the children’s litera-
ture corpus released by Facebook consisting of fairy tales and story
books from Project Gutenberg [18]. The size of the text corpus
collected was 100 MB.

3.1.2 Vector Spaces as Child Knowledge Representation. We train
a distributed word embedding model (Word2Vec [35]) on the col-
lected children’s corpus to transform words into vector representa-
tions. In distributed models, the semantics or meaning of the word
is distributed across all dimensions of the vector that encodes it.
In the resulting vector space, plenty of linguistic regularities and
patterns are encoded through the learned word vectors. The biggest
merit of such models is that semantically similar words are located
close to each other and tend to form clusters. This characteristic is
useful for exploring and discovering new pairs of words that share
similar semantic relations. We exploit this characteristic to adapt
this generic semantic vector space to the Outbreak task.

3.1.3 Task-Specific Transformation of Knowledge.

AKeyword - SkillMapping forOutbreak. A competent player
of the Outbreak game should be able to choose and suggest a reason-
able skill card given the current game context in order to overcome
potential threats. The game context information consists of threats
(keywords) mentioned by the game master and other players in
previous turns and provides clues to the virtual child to select ap-
propriate skill cards. For example, if someone asked if there is a
computer in the room, here computer is a keyword, and the virtual
child may suggest the skill hack as a reasonable response since
it relates to computer. We use a semi-supervised heuristic to map
skill words and plausible keywords in the generic knowledge graph,
denoted by K . We use a small set of known associations between
skills and keywords extracted from the Outbreak game play corpus
as a seed. We extract new potential keywords for a skill s as follows:

arдmin[α(∥ x − xc ∥2) + β ∥ x − xs ∥2] (1)

where x is any vector in K , xc is the vector centroid of keywords
that were mapped to a given skill s , and xs is the word vector of
the skill word. The first part of this formulation finds the closest
neighbors of the keywords that were linked to a particular skill
since we hypothesize that such words are also related to the skill.
The other part selects terms that are closest to the corresponding

1Download links to various sources we collected data from :
https://tinyurl.com/childmediacorpus
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Table 1: The Top 5 Keywords For a Part of Skill Words

Skill Fight Love Animals Hack See
Keywords Enemy Animal Robot Escape

Attack Dog Machine Light
Terrible Creature Computer Dark
Deadly Cat Software Get away
Monster Bird Automatic Bright
... ... ... ...

Figure 3: Retrofitting Knowledge Graph to be more game-
specific: The dots with the same color are mapped to the
same skill, the words in red are skill words and the rest are
keywords

skill. α and β control the relative strength of association of a new
potential keyword to already existing keywords and the skill itself.
The method is also illustrated in Figure 3. Table 1 shows new top
5 keywords from ∼400 keywords. This process results in links
between potentially new keywords and skills being established
apart from those already present in the limited game play data.
This is useful for simple verbal behaviors like making a suggestion
to put a specific skill card downwhen a new keyword is encountered
in future games. The virtual agent would suggest one of the skills
most strongly mapped to that keyword by Equation 1, so the agent
may say "it would be smart to put love animals because there is a
dog" given the keyword dog. During the Q&A phase of the game,
the question templates can be completed by picking a new related
keyword for a certain skill and filling it into the template. For
example, if the virtual agent has the skill card see, a question like
"Does the room look dark?" might be asked. These keyword-skill
associations enable the virtual agent to engage in basic game play
with real children. We evaluate these associations manually, which
we describe in Section 4.

AdaptingKnowledgeGraph for Outbreak. During the course
of game play, we expect certain associations in the knowledge graph
to be more reinforced than others and a gradual transformation
of the knowledge graph to optimize strategies for Outbreak that
result in more wins. This observation is drawn from the memory
activation hypothesis wherein the strength of association between
certain cognitive units increases with practice and repeated tasks,
forming a working memory for the task [3]. For instance, children
often start associating words like "Zombie" and "Monster" with
"fight" or "block" as they play more rounds. We adapt the general
knowledge network to a game-specific one using the retrofitting
method from [13] to modify the vector space based on the newly
extracted and evaluated associations. The idea of retrofitting word
vectors is to force a word to be close, not only to its original neigh-
borhood, but also to other concepts that share special edges with it,
like the skills in this case.

3.2 Curiosity-related Verbal Behaviors
Generation

Our ultimate goal is for the virtual child to induce curiosity in other
players during game play, and previous work has shown that three
verbal behaviors in particular - Justification, Argumentation and
Hypothesis Verbalization - can stimulate curiosity during peer-peer
interaction. While the generated keyword - skill associations can
already produce simple verbal behaviors to support basic game play,
we still hope to support higher order reasoning that is crucial to
elicit curiosity stimulating behaviors. In this section, we describe
how our pre-built knowledge network can be leveraged to generate
these three verbal behaviors.

3.2.1 Extracting Dependency Relations for Behavior Generation.
Inspired from related work in the area of automatic relation ex-
traction, we begin by doing a dependency parsing based syntactic
analysis of the game-play corpus to discover common syntactic
structures children use when they display these three verbal behav-
iors. Dependency parsing breaks sentences down to their syntactic
tree-structures. However, the size of our child-child data is limited
and curiosity-stimulating behaviors are sparse, resulting in infre-
quent patterns. Once again, we turned to auxiliary datasets that
have been created for the verbal behaviors we wanted to generate.
For example, AI2 Elementary and Middle School Science Questions
corpus was manually annotated for Justification [21] and the In-
ternet Argument Corpus has been annotated for 3079 Argument
instances [51]. Dependency Parsing was applied to both datasets.
We find that the dependency relations of amod (adjectival modifier
of a noun phrase) and dobj(direct object of a verb phrase) rank in
the top 7 among 40 dependency relations. The other top relation
types such as det(determiners) and punc(punctuations) are essential
grammatical constructs present in most sentences but play no ma-
jor semantic roles. We interpret the high frequency of amod and
dobj as proposing properties of a keyword(amod) or actions that
can be done by and to keywords(dobj). For instance, a dangerous
monster or the ghost can kill us. For hypothesis verbalization, to
the best of our knowledge, there is no publicly available auxiliary
corpus. Moreover, hypothesis verbalization is rarely done in the
Outbreak corpus but is found to be specifically associated with
making more than one group member curious [37]. [26] claim that
a hypothesis is a conjectural statement that encodes the relation
between two or more variables, so amod and dobj still serve as
potential relations between concepts and are useful for generating
conjectural statements. For each keyword, we extract various po-
tential relational words based on the above two relations from the
collected children’s corpus(e.g. for keyword monster, an extracted
relation word is dangerous through the relation amod). These rela-
tions between words not only serve to discern attributes of objects
or actions they can do, but may also be the latent reasoning that
supports the choice of a specific skill card made by a real child.

3.2.2 Curiosity-related Verbal Behaviors Generation. The gen-
eral strategy for behavior generation involves using the current
game context (keywords mentioned thus far during game play) to
construct queries and search the retrofitted child knowledge graph.
The most generalizable search strategy we develop is the bottom-up
strategy, shown in Figure 4: Given a keyword and skill, we find
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Figure 4: a. The Figure of Bottom Up Strategy in an Example; b. The Figure of Top Down Strategy in an Example; c. The Figure
Showing the Overall Strategy for NLG

terms related by the amod, dobj relations from our general chil-
dren’s corpus to the keyword that are semantically similar to the
skill. We start from the keyword, and iterating over most frequent
relation words, we calculate their semantical similarities with the
skill using the following formula.

α ∗ sim(relation, skill) + β ∗ sim(keyword, skill) (2)

,where sim(x, y) calculates the similarity of vectors for words x and
y in the retrofitted word vector space, and α and β are used for
controlling the relative strength of each term in 2. Figure 4 shows
the result of combining the strategy with knowledge graph for final
utterance generation.

For Justification we pick a keyword in the known game con-
text and use the knowledge graph to find an appropriate skill as
before. A relation word is generated to support this association us-
ing the bottom-up approach. For example, ifmonster is a mentioned
keyword and fight is chosen as a possible skill to overcome the
monster. Words related to monster and fight are scored and ranked
using Equation 2 and a top-scoring term is chosen to complete the
justification. A possible generated sentence can be:We need fight
because there is gigantic monster there.

Argument often happens when one gives reasons to deviate
from someone else’s ideas. We observe from child-child game play
data that children often argue against a skill suggested by other
players. For example, if fight is suggested by a player for the key-
wordmonster, we score and rank related words as before. A possible
generated argument can be:No fight because the monster isn’t deadly.
Another approach for argument generation is to argue for another
skill for a mentioned keyword. We start from a mentioned keyword
and choose the next closest skill from the knowledge graph. For
example, the next relevant skill word for monster is friend, and the
generated argument can be: No, the monster can be hurt, so we need
friend.

Hypothesis verbalization helps in expressing new possible
relations between two entities using conjectural statements. Using
the bottom-up strategy, we propose an alternative attribute about
a keyword as a hypothesis. For instance, the keyword monster is
usually related to fight, but to encourage other players to explore
alternate skills, we can use a word related to the skill friend and
make the following hypothesis: But what if the monster is poor!!.

An important observation about children’s game play is that they
don’t always use information they acquire during the Q&A phase.
Instead, they may consider the skill cards they possess in that game
round. For this, we develop a top-down search strategy (refer Figure
4). For each skill, we extract a pair of amod and dobj related words

Table 2: Examples of Generated Child Language Patterns

Verbal Behav-
iors

Generated Patterns

Justification KEYWORD is RELATION so we need SKILL.
I put SKILL down because it has RELATION KEYWORD.

Argument There’s no RELATION KEYWORD there.
No SKILL, because this has no RELATION KEYWORD.

Hypothesis
Verbalization

Try SKILL what if there’s RELATION KEYWORD there.

Maybe like RELATION KEYWORD.

that are closely associated with the skill. This strategy is especially
helpful for hypothesis verbalization, which can be generated based
on initiation from the skills without game context information. For
instance, for the virtual child to use the Hack skill, the top-down
strategy can output a sentence like: There might be an automatic
machine in the room. Such a sentence promotes other children
to think more about the hypothesis or generate other plausible
hypotheses.

3.2.3 Natural language utterance generation. Verbal behaviors
are planned with the selection of appropriate skill, keyword and
relation word. To generate the final agent utterance, we create
sentence patterns where the chosen words are filled in. To obtain
templates that closely resemble children’s speech during gameplay,
another dependency parsing was performed on Outbreak game
play data, and for each verbal behavior we pick the top 10 common
syntactic structures and extract the corresponding natural language
patterns that contain these syntactic structures. These patterns are
made generic by replacing the key content words with placeholders
like SKILL and KEYWORD, to create templates that can be filled in
real-time to generate new utterances. Here too, we let the child-
child interaction data inform the language of the virtual agent
to make it more believable and peer-like. Table 2 shows the top
templates extracted for the three behaviors.

4 EVALUATION
Game Belief Update Evaluation. Precision and Recall are adopted

to evaluate the newly extracted keyword-skill associations. For
precision, we generated top 50 potential keywords for 7 skills in
Outbreak and asked 4 in-house annotators to recognize reasonable
pairs based on their common-sense judgment of a reasonable se-
mantic relationship between a keyword and skill in the context
of the game. We disambiguate using majority vote among human
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annotators and leave out cases where even human annotators dis-
agree. We calculated precision as the proportion of associations that
the computational model retrieves that are deemed reasonable and
get a score of 0.83. Krippendorff’s alpha for annotators’ inter-rater
reliability is 0.86. For Recall, we picked 200 words from the larger
peer-targeted media corpus and asked annotators to map each word
to one or more of the 7 skills. We again use majority vote as the
ground truth for reasonable associations. Krippendorff’s alpha was
0.86. Our computational model is used to find the corresponding
highest ranked skills only for associations marked reasonable, to
measure if one or more of them are correctly retrieved. The recall
was 0.68.

Curiosity-related Verbal Behaviors Generation Evaluation. We
evaluated the generated curiosity-related verbal behaviors for game
and context appropriateness. We extract artificial game contexts in
the form of keywords mentioned by other players/game master as
the potential context to reason over and plan behavior content from.
We generated 100 clauses for three verbal behaviors and also mixed
them with 100 randomly picked clauses from child-child game play
corpus. We asked the annotators to classify the utterances into the
3 categories based on the generated utterance and the available
context. The computed accuracy of classification over all three be-
haviors is 0.77 and the Krippendorff’s alpha for agreement among
annotators is over 0.7 for all three behaviors.

5 DISCUSSION
Knowledge Graph Construction. We validate that the gener-

ated skill-keyword associations are relevant to the current game
context. The evaluation performance of the skill-keyword associa-
tion measures the success of automatically extracting associative
relationships between concepts in the game using a game-adapted
child-centered text dataset. Even though skills and key-words are
specific to the Outbreak game, we present a generalizable method
of building a semantic memory representation (knowledge graph)
from a large age-appropriate text corpus that uses an initial seed
of syntagmatic associations from human-human on-task data. The
knowledge graph serves as the primary source for all game-based
reasoning. This technique is generally applicable to a wide range
of tasks that require the virtual agent or dialogue agent to reason
over structured knowledge in a constrained context. Incorporation
of structured knowledge into virtual agents is an emerging field for
addressing the challenges of personalization, intent understanding
from context and semantic relevance of responses [2]. In recent
work, agents are using distributional semantic memory for small
reasoning tasks - robots that understand analogies in human in-
structions [47] or agents that detect behavioral affordances such as
objects that can be grasped, drunk, worn, etc [15].

Curiosity-Inducing Behavior Generation. We automate the
agent’s curiosity-related verbal behavior generation for a limited
number of syntactic relations(dobj, amod) between entities. The
promising evaluation of the generated curiosity-related behaviors
for game-context appropriateness supports the automated genera-
tion of such behaviors in constrained task settings. For instance, we
can generate arguments, hypotheses and justifications for the agent
based on keywords extracted from conversational history. These
behaviors are integral to scientific talk and can be incorporated into

intelligent pedagogical agents that engage in educational games
or peer-tutoring. Our method supports syntactic and semantic re-
lations to generate context relevant and coherent sentences. An
important future work is to understand causal relations between
concepts and the pragmatics of human conversation that are crucial
for engaging humans in scientifically accurate talk.

In the adapted cognitive architecture proposed in this work, we
have developed the module for generation of curiosity related be-
haviors. Procedural memory also includes a model that selects the
next behavior that can fulfill the purpose of game play or stim-
ulate curiosity in other players. In future work, we plan to build
a behavior selection model that optimizes for positive change in
group curiosity (curiosity of all group members) to carry out a
full scenario testing of Outbreak game play with children. This
will be done in order to validate if curiosity-inducing behaviors
selected and generated by the virtual peer can induce curiosity in
real children.

Peer-Targeted Knowledge Construction and LanguageMod-
eling. Augmentation of child-child interaction data with child-
centered media data allows for age-appropriate semantic associ-
ations to be learnt by our model. This is done to ensure co-equal
participation of the virtual peer to facilitate constructive debate of
ideas instead of acceptance from an agent with higher authority.
This is not only crucial for effecting positive impact on curiosity,
but also leads towards the general modeling of virtual peers that
display symmetric age-appropriate cognitive abilities. We currently
evaluate our approach for age-appropriate associations and peer-
like behaviors and linguistic patterns based on adults’ evaluations
of children’s reasoning and language. A thorough evaluation of
the relative success of this child-centered data-driven technique
should involve children of the target age. Children may give im-
plicit evaluations for believability and age-appropriateness during
their interactions with the virtual peer. Crowd-sourcing with child
workers has just recently been explored in the HCI community.
For example, Manojlovic et al. [34] found that joint tasks solved by
parents and children are more acceptable. There is potential new
space to generate creative tasks for children to evaluate the per-
formance of data-driven techniques for modeling of virtual peers.
This can further fine-grained incremental development of virtual
peer technology rather than final user studies with children.

6 CONCLUSION
Peer interaction may serve as special stimulus in inducing curiosity
by facilitating increased uncertainty and conceptual conflicts and
collaborative games provide an ideal setting to express uncertainty.
In this work, we build a virtual peer agent that can elicit curiosity
stimulating behaviors while engaging in a discussion based board
game. We develop and implement a behavior generation frame-
work to realize peer-targeted curiosity-inducing behaviors such as
hypothesis verbalization, argumentation and justification during
game play. We create a child-centered knowledge graph and make
game-specific adaptations to the induced graph. We use child-child
interaction driven behavior and language modeling to generate
spontaneous and context-appropriate verbal behaviors. Promising
intrinsic evaluations of the generated behaviors for game-context
appropriateness and generalizability of the generation framework
opens up encouraging new directions in virtual peer modeling for
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open-ended game play and science reasoning tasks. In future work,
we intend to carry out user testing with children to validate if
generated behaviors can stimulate curiosity in peers.

REFERENCES
[1] 2016. World Economic Forum (2016) New Vision for Education: Fostering Social

and Emotional Learning through Technology. http://www3.weforum.org/docs/
WEF_New_Vision_for_Education.pdf

[2] 2018. Enhancing Virtual Agents with Structured Knowledge. https://www.
econtext.ai/wp-content/econtextfiles/eContext-VA-Whitepaper.pdf

[3] John R Anderson. 1983. A spreading activation theory of memory. Journal of
verbal learning and verbal behavior 22, 3 (1983), 261–295.

[4] John R Anderson, Daniel Bothell, Michael D Byrne, Scott Douglass, Christian
Lebiere, and Yulin Qin. 2004. An integrated theory of the mind. Psychological
review 111, 4 (2004), 1036.

[5] Marco Baroni and Alessandro Lenci. 2010. Distributional memory: A general
framework for corpus-based semantics. Computational Linguistics 36, 4 (2010),
673–721.

[6] Sara Bernardini, Kaska Porayska-Pomsta, Tim J Smith, and Katerina Avramides.
2012. Building autonomous social partners for autistic children. In International
Conference on Intelligent Virtual Agents. Springer, 46–52.

[7] Essia Bessaies, SlimMesfar, and Henda Ben Ghezala. 2017. Generating Answering
Patterns from Factoid Arabic Questions. Proceedings of the Linguistic Resources
for Automatic Natural Language Generation-LiRA@ NLG (2017), 17–24.

[8] Justine Cassell, Kathleen Geraghty, Berto Gonzalez, and John Borland. 2009.
Modeling culturally authentic style shifting with virtual peers. In Proceedings of
the 2009 international conference on Multimodal interfaces. ACM, 135–142.

[9] Justine Cassell, Hannes Högni Vilhjálmsson, and Timothy Bickmore. 2001. Beat:
the behavior expression animation toolkit. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. ACM, 477–486.

[10] Denise Davila and Lisa Patrick. 2010. Asking the experts: What children have to
say about their reading preferences. Language Arts 87, 3 (2010), 199.

[11] Guillaume Dubuisson Duplessis, Alexandre Pauchet, Nathalie Chaignaud, and
Jean-Philippe Kotowicz. 2017. A conventional dialogue model based on dia-
logue patterns. International Journal on Artificial Intelligence Tools 26, 01 (2017),
1760009.

[12] Gunes Erkan, Arzucan Ozgur, and Dragomir R Radev. 2007. Semi-supervised
classification for extracting protein interaction sentences using dependency
parsing. In Proceedings of the 2007 Joint Conference on EmpiricalMethods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL).

[13] Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and
Noah A Smith. 2014. Retrofitting word vectors to semantic lexicons. arXiv
preprint arXiv:1411.4166 (2014).

[14] Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. Bradford
Books.

[15] Nancy Fulda, Daniel Ricks, Ben Murdoch, and David Wingate. 2017. What can
you do with a rock? Affordance extraction via word embeddings. arXiv preprint
arXiv:1703.03429 (2017).

[16] Katrin Fundel, Robert Küffner, and Ralf Zimmer. 2006. RelExâĂŤRelation extrac-
tion using dependency parse trees. Bioinformatics 23, 3 (2006), 365–371.

[17] Goren Gordon, Cynthia Breazeal, and Susan Engel. 2015. Can children catch
curiosity from a social robot?. In Proceedings of the Tenth Annual ACM/IEEE
International Conference on Human-Robot Interaction. ACM, 91–98.

[18] Felix Hill, Antoine Bordes, Sumit Chopra, and JasonWeston. 2015. The goldilocks
principle: Reading children’s books with explicit memory representations. arXiv
preprint arXiv:1511.02301 (2015).

[19] Christine Howe. 2009. Peer groups and children’s development. Vol. 14. John Wiley
& Sons.

[20] Robyn Hromek and Sue Roffey. 2009. Promoting Social and Emotional Learning
With Games: âĂĲIt’s Fun and We Learn ThingsâĂİ. Simulation & Gaming 40, 5
(2009), 626–644.

[21] Peter Jansen, Niranjan Balasubramanian, Mihai Surdeanu, and Peter Clark. 2016.
What’s in an Explanation? Characterizing Knowledge and Inference Require-
ments for Elementary Science Exams. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers. 2956–
2965.

[22] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge
graph embedding via dynamic mapping matrix. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), Vol. 1.
687–696.

[23] Jamie Jirout and David Klahr. 2012. Children’s scientific curiosity: In search of an
operational definition of an elusive concept. Developmental Review 32, 2 (2012),
125–160.

[24] Gary Jones, Frank E Ritter, and David JWood. 2000. Using a cognitive architecture
to examine what develops. Psychological Science 11, 2 (2000), 93–100.

[25] Celeste Kidd and Benjamin Y Hayden. 2015. The psychology and neuroscience
of curiosity. Neuron 88, 3 (2015), 449–460.

[26] Dorling Kindersley. 2013. Nursing Research Society of India.
[27] John E Laird. 2008. Extending the Soar cognitive architecture. Frontiers in

Artificial Intelligence and Applications 171 (2008), 224.
[28] Thomas K Landauer. 2006. Latent semantic analysis. Wiley Online Library.
[29] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning

entity and relation embeddings for knowledge graph completion.. InAAAI, Vol. 15.
2181–2187.

[30] Markus Lindberg, Kristian Månsson, Birger Johansson, Agneta Gulz, and Chris-
tian Balkenius. 2017. Does a robot tutee increase children’s engagement in a
learning-by-teaching situation?. In International Conference on Intelligent Virtual
Agents. Springer, 243–246.

[31] Hugo Liu and Push Singh. 2004. ConceptNet a practical commonsense reasoning
tool-kit. BT technology journal 22, 4 (2004), 211–226.

[32] George Loewenstein. 1994. The psychology of curiosity: A review and reinter-
pretation. Psychological bulletin 116, 1 (1994), 75.

[33] Marsha C Lovett, Larry Z Daily, and Lynne M Reder. 2000. A source activation
theory of working memory: Cross-task prediction of performance in ACT-R.
Cognitive Systems Research 1, 2 (2000), 99–118.

[34] Stefan Manojlovic, Katerina Gavrilo, Jan de Wit, Vassilis-Javed Khan, and Panos
Markopoulos. 2016. Exploring the potential of children in crowdsourcing. In
Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems. ACM, 1250–1256.

[35] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[36] Wookhee Min, Joseph B Wiggins, Lydia Pezzullo, Alexandria Katarina Vail,
Kristy Elizabeth Boyer, Bradford W Mott, Megan Frankosky, Eric N Wiebe, and
James C Lester. 2016. Predicting Dialogue Acts for Intelligent Virtual Agents
with Multimodal Student Interaction Data.. In EDM. 454–459.

[37] Bhargavi Paranjape, Zhen Bai, and Justine Cassell. 2018. Predicting the Temporal
and Social Dynamics of Curiosity in Small Group Learning. In International
Conference on Artificial Intelligence in Education. Springer, 420–435.

[38] Hae Won Park, Rinat Rosenberg-Kima, Maor Rosenberg, Goren Gordon, and
Cynthia Breazeal. 2017. Growing growth mindset with a social robot peer.
In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction. ACM, 137–145.

[39] Jenefer Philp, Rebecca Adams, and Noriko Iwashita. 2013. Peer interaction and
second language learning. Routledge.

[40] Jean Piaget. 2013. The moral judgment of the child. Routledge.
[41] Sameerchand Pudaruth, Sandiana Amourdon, and Joey Anseline. 2014. Auto-

mated generation of song lyrics using CFGs. In Contemporary Computing (IC3),
2014 Seventh International Conference on. IEEE, 613–616.

[42] Victoria J Rideout, Ulla G Foehr, and Donald F Roberts. 2010. Generation M
[superscript 2]: Media in the Lives of 8-to 18-Year-Olds. Henry J. Kaiser Family
Foundation (2010).

[43] Kimiko Ryokai, Cati Vaucelle, and Justine Cassell. 2003. Virtual peers as partners
in storytelling and literacy learning. Journal of computer assisted learning 19, 2
(2003), 195–208.

[44] Dorothy G Singer and Jerome L Singer. 2012. Handbook of Children and the Media.
Sage.

[45] Tanmay Sinha, Zhen Bai, and Justine Cassell. 2017. A new theoretical framework
for curiosity for learning in social contexts. In European Conference on Technology
Enhanced Learning. Springer, 254–269.

[46] BrianW Sturm. 2003. The information and reading preferences of North Carolina
children. School Library Media Research 6 (2003).

[47] Douglas Summers-Stay and Dandan Li. 2017. Analogical Reasoning with
Knowledge-based Embeddings. (2017).

[48] Ron Sun. 2006. The CLARION cognitive architecture: Extending cognitive mod-
eling to social simulation. Cognition and multi-agent interaction (2006), 79–99.

[49] Andrea Tartaro and Justine Cassell. 2006. Authorable virtual peers for autism spec-
trum disorders. In Proceedings of the Combined workshop on Language-Enabled
Educational Technology and Development and Evaluation for Robust Spoken Dia-
logue Systems at the 17th European Conference on Artificial Intellegence.

[50] Alexandra To, Jarrek Holmes, Elaine Fath, Eda Zhang, Geoff Kaufman, and Jessica
Hammer. 2017. Modeling and Designing for Key Elements of Curiosity: Risking
Failure, Valuing Questions. (2017).

[51] Marilyn A Walker, Jean E Fox Tree, Pranav Anand, Rob Abbott, and Joseph King.
2012. A Corpus for Research on Deliberation and Debate.. In LREC. 812–817.

[52] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes.. In AAAI, Vol. 14. 1112–1119.

78

http://www3.weforum.org/docs/WEF_New_Vision_for_Education.pdf
http://www3.weforum.org/docs/WEF_New_Vision_for_Education.pdf
https://www.econtext.ai/wp-content/econtextfiles/eContext-VA-Whitepaper.pdf
https://www.econtext.ai/wp-content/econtextfiles/eContext-VA-Whitepaper.pdf



