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Abstract. Machine Learning (ML) is a powerful tool to unveil hidden
patterns in data, unearth new insights and promote scientific discovery
(SD). However, expertise is usually required to actualize the potential
of ML fully. Very little has been done to begin instructing the youth of
society in ML, nor utilize ML as an SD tool for the K-12 age range. This
research proposes SmileyDiscovery, an ML-empowered learning environ-
ment that facilitates SD for K-12 students and teachers. We conducted a
2-session preliminary study with 18 K-12 STEM teachers. Findings con-
firm the effectiveness of SmileyDiscovery in supporting teachers to (1)
carry out ML-empowered SD, (2) design their own curriculum-aligned
SD lesson plans, and (3) simultaneously obtain a rapid understanding of
k-means clustering. Design implications distilled from our study can be
applied to foster more effective learning support in future systems.
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1 Introduction

Scientific discovery (SD) learning plays a critical role in K-12 STEM education
by mimicking how scientists study the world through data collection, experi-
mental operations, and pattern interpretation [9,10]. SD naturally connects with
Machine Learning (ML) which accelerates data analysis by systematically search-
ing hypotheses and revealing complex patterns in big data [16]. With ML becom-
ing increasingly fundamental in generating new findings in astronomy, biology,
chemistry [21], and other STEM domains, it is essential to provide opportunities
for K-12 students and teachers to apply ML as a new discovery tool.

Imagine a high-school biology teacher encouraging students to discover new
knowledge about dynamic ecosystems. The teacher first introduces a dataset
containing over 10 ecological attributes collected from hundreds of ecological field
sites. By exploring a few field sites, students may raise questions/hypotheses on
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interactions between ecological attributes. Then students can begin probing these
initial ideas using pattern recognition with the help of ML. This may, in turn,
lead to a cycle of further inquiries with new hypotheses. Such processes would
largely promote science practices required by national standards. These practices
include asking questions, planning and carrying out investigations, analyzing and
interpreting data, engaging in evidence-based argumentation, and so forth [46].

Despite those promising benefits, little effort has been made to understand
ML as a data-driven discovery tool for K-12 science learning. One challenge is
balancing the support in learning ML and applying ML for novice learners [2,52].
The other is the lack of curriculum-aligned learning activities for K-12 teachers
to engage students in ML-empowered SD [29,48].

To address these challenges, we developed a learning environment, SmileyDis-
covery, to support low-barrier ML-empowered SD without extra ML training for
K-12 teachers and students. SmileyDiscovery integrates three major components
aligned with SD learning phases [33]: (1) orientation & initial conceptualization
with Smiley-Data mapping, (2) initial investigation with pairwise comparison
and manual clustering, (3) further investigation & conceptualization with auto-
matic clustering. Then we evaluated SmileyDiscovery with K-12 teachers due
to their essential roles in integrating innovative technology for pedagogy [25].
Our research questions are: RQ1. Can SmileyDiscovery support K-12 teach-
ers to carry out ML-empowered SD? RQ2. Can SmileyDiscovery support K-12
teachers to design SD learning activities? RQ3. Can SmileyDiscovery support
learning ML? Our main contributions include:

1. SmileyDiscovery facilitating ML-empowered SD for K-12 STEM learning;

2. A set of ML-SD connections for K-12 teachers to design ML-empowered SD
learning activities aligned with STEM curriculum;

3. Design implications for technology designers without SD background.

2 ML-Empowered SD and K-12 STEM Learning

Research shows that ML approaches empower data-driven discovery by enabling
hypothesis generation, iterative experimentation with different parameters, and
pattern recognition by gradually revealing more refined parameters [30,31]. Var-
ious ML techniques have been proposed to automate SD [27]. For example,
k-means clustering, an unsupervised ML algorithm, is used to discover laws by
grouping similar objects [13,14], identify dependencies of attributes [44], and
form taxonomies [51]. Such methods, however, are applied in science at a pro-
fessional level [16,21] and thus are inappropriate for K-12 teachers and students
with limited CS/ML backgrounds. This points out a demand for designing an
ML-empowered SD learning environment in K-12 contexts.

There are emerging research efforts to explore the opportunities of making
ML concepts and methods accessible for K-12 students [14,28,49,53]. One study
shows that data visualization supports students with limited computing knowl-
edge to gain a basic understanding of cluster analysis [49]. Further, it indicates
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the potentials of applying ML methods for data interpretation by pattern gen-
eration. Another study facilitates youth to train and test ML models of their
athletic activities [53]. It shows that ML enhances science learning by aligning
ML modeling with modeling scientific phenomena, an essential practice of sci-
ence recommended in curriculum standards [46]. Informed by these, our work
aims to design a learning environment connecting ML components with SD prac-
tices. We incorporate design guidelines from existing research about introducing
ML in K-12 STEM contexts, such as unveiling complex ML concepts step by
step [14,28] and visualizing ML models for explainability [13,49,53].

3 The Design of SmileyDiscovery
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Fig. 1. SmileyDiscovery components: (a) orientation & initial conceptualization by
Smiley-Data mapping; (b) initial investigation by pairwise comparison and manual
clustering; (c) further investigation & conceptualization by automatic clustering.

We adopted K-means clustering to support SD due to its wide application
in STEM domains [3,26,35,39]. Compared to supervised learning, unsuper-
vised ML (e.g., clustering) more naturally connects with exploration leading
to deeper learning in SD [43], and inductive reasoning through accumulative
evidence [15,38], an accessible cognitive skill for young learners [30,40,42]. To
make cluster analysis accessible for K-12 students, we used Smiley visualiza-
tion [49], translating each data attribute to a facial feature, to take advantage
of people’s high processing capacity to human faces [6] and facilitate similarity
computation with superposition comparative visualization [17].
SmileyDiscovery enables SD learning stages modified from well-established
frameworks [1,5,33], including orientation & initial conceptualization,
where learners get familiar with the topic and generate hypotheses based on prior
knowledge; initial investigation, where learners explore dataset for preliminary
analysis; further investigation & conceptualization, where learners iterate
experiments and derive findings. Three components (Fig. 1) support scaffolding
for SD [37] to instruct toward higher complexity [24]. This includes introduc-
ing from basic (e.g., pairwise comparison) to advanced ML components (e.g.,
automatic clustering) and from a small subset to the entire dataset. Further, we
designed typing boxes to record the generation and refinement of hypotheses.



Introducing Machine Learning as a Scientific Discovery Tool for K-12 489

We collaborated with an experienced science educator and designed three
ML-empowered SD learning activities: ecosystems [32], wine chemistry [8], and
breast cancer diagnosis [11]. Two ML experts checked the appropriateness of
applying k-means clustering in those SD activities. Below we present how Smi-
leyDiscovery supports SD learning across stages with the ecosystem activity.

3.1 Orientation and Initial Conceptualization

First, learners are introduced to multidimensional data about ecological field
sites (Fig. 2(a)). Second, they propose initial hypotheses and drag attributes of
interest onto facial features (Fig. 2(b)). Such an active construction of Smiley can
better engage learners [41]. Third, they manipulate sliders to understand how
data attribute values influence corresponding Smiley facial features (e.g., a lower
latitude of a field site leads to a smaller mouth). To reduce the cognitive load of
memorizing mapping relationships through SD, learners can view Smiley-data
mapping in real-time by hovering the cursor over facial features (Fig. 2(d)).
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Fig. 2. SmileyDiscovery component supporting orientation & initial conceptualization.

3.2 Initial Investigation

First, learners use pairwise comparison to identify intriguing patterns between
two pre-selected field sites representing two distinct ecosystem clusters. This
design is informed by contrastive explanation [7] stimulating abductive reason-
ing [15,40]. E.g., the distinctions between two Smileys (Fig. 3(a)) may trigger
learners to wonder if lower latitudes relate to higher temperatures, precipita-
tion, canopy, beetle richness. Second, learners click on Smileys to overlay them
on the representative field sites (Fig. 3(b)) to select similar ones. This trial-
and-error process supports deeper reasoning [18,20,34] about (dis)similarities
unveiled (e.g., some field sites share low latitudes and high canopy & beetle
richness, while some share high latitudes and low canopy & beetle richness).

3.3 Further Investigation and Conceptualization

First, learners select a value of k (Fig. 3(c)). Second, learners conduct inductive
cluster analysis by investigating (1) shared features within clusters (intra-cluster
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pattern) via visual inspection of the stack of Smileys belonging to the same group
(Fig. 3(d)); (2) differentiating features between clusters (inter-cluster pattern)
by overlaying the two average Smileys (centroid) (Fig. 3(e)). To still consider
intra-cluster variations while using a centroid representing each cluster, learners
can click on each cluster to switch the view between a stack (Fig. 3(d)) and
a centroid (Fig. 3(e)). With variations and patterns introduced by the entire
dataset, learners are expected to concentrate on fewer ecological attributes than
initial investigation. Third, learners synthesize accumulative evidence from intra-
&inter-cluster patterns for further conceptualization (Fig. 3(f)). E.g., the first
two clusters show that a high canopy may lead to high beetle richness, and field
sites with similar latitudes have similar precipitations and temperatures.

The components above naturally open up the black-box of ML by asking
students to gradually apply similarity computation, centroid, evaluating values
of k with intra-&inter-cluster patterns. The algorithmic process of the k-means
clustering is also implicitly embedded in the scaffolding for manual clustering.
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Fig. 3. SmileyDiscovery components supporting the initial investigation and further
investigation & conceptualization.

4 Methods

4.1 Study Design

Eighteen in-service K-12 STEM teachers without CS/ML backgrounds were
recruited from a teacher education course, Integrating Technology with STEM

Table 1. Participant information for each group.

Group | Teaching grades Subjects

1 Elementary (N =3), Middle school (N=1) Science (N=2), Math (N=2)
2 Middle school (N =4) Science (N =3), Math (N=1)
3 High school (N =4), Middle school (N=1) | Science (N=1), Math (N=4)
4 High school (N=5) Science (N =5)
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Teaching, at a research-based university. They were divided into four groups
based on their teaching experience (grades & subjects) (Table 1) and participated
in the study via an online meeting platform, Zoom. The study contains two ses-
sions in two consecutive weeks. In the Teacher-as-Learner (TaL) session, teach-
ers watched a tutorial video about completing an ML-empowered SD activity in
SmileyDiscovery and performed another one with in-time help from researchers.
In Teacher-as-Designer (TaD), teachers collaboratively designed ML-empowered
SD lesson plans via an online design canvas by specifying each instruction step
and selecting SmileyDiscovery components to facilitate corresponding steps.

4.2 Data Collection and Analysis

RQ1. Can SmileyDiscovery Support K-12 Teachers to Carry Out ML-empowered
SD? We collected log data of how teachers went through the example activity
in TaL, including text input and clicking behaviors (Table 2). We measured suc-
cessful completions with text input by examining (1) if all questions are answered
based on proper ecological attributes, (2) if further conceptualization involves
meaningful findings emerging from the data; we then counted clicking behav-
iors to see if teachers interacted elaborately with ML components. We measured
patterns in successful completions by examining hypothesis development and
comparing differences in clicking behaviors between successful and unsuccessful
completions. Four participants who encountered technical issues were excluded.

Table 2. Log data (text input & clicking behaviors) collected for each SD stage.

Orientation & Initial conceptualization Text input: hypothesis of
ecological interactions based on prior knowledge

Initial investigation Clicking behavior: (1) select field sites similar to
the two representative field sites for manual clustering; (2) remove less
similar field sites from a cluster. Text input: (3) interpretation of shared
patterns identified manually; (4) interpretation of differentiating patterns
between ecological field site subsets

Further investigation & conceptualization Clicking behavior: (1)
conduct automatic clustering with different values of k; (2) switch
between Smiley stacks and centroids; (3) compare centroids of ecosystem
clusters. Text input: (4) interpretation of shared & differentiating
patterns in ecosystem clusters; (5) findings of dynamic interactions
between ecological attributes

RQ2. Can SmileyDiscovery Support K-12 Teachers to Design SD Learning Activ-
ities? We explored the pedagogical potentials of SmileyDiscovery by asking
teachers to (1) post SmileyDiscovery-supported teaching ideas before TaD; (2)
collaboratively design ML-empowered lesson plans in TaD; (3) reflect on applying



492 X. Zhou et al.

SmileyDiscovery in teaching in journals after TaD. First, we measured the diver-
sity of teaching ideas. Two researchers independently assessed each teaching idea
on whether it includes multidimensional datasets and applies cluster analysis to
solve problems, then independently categorized teaching ideas into NGSS disci-
plinary core ideas [46]. Both achieve near-perfect agreement (Cohen’s Kappas:
0.87, 0.91). Second, to measure teachers’ fulfillment of ML-SD connections, we
identified ML components selected to support each SD phase in teacher-designed
lesson plans and counted each connection. Third, we measured teachers’ percep-
tions toward ML-empowered STEM teaching. Two researchers independently
coded teachers’ reflection journals using thematic analysis, meeting regularly to
address disagreements and refine codes.

RQ3. Can SmileyDiscovery Support Learning ML? We administered pre-post
tests before and after the Tal. to assess teachers’ understanding of k-means
clustering. Two researchers independently rated the tests, achieving near-perfect
agreement with Cohen’s Kappas of 0.85 (pre) and 0.83 (post). We measured
learning gains by paired t-test as the data satisfies normal distribution. Then
we measured the remaining misconceptions by thematic analysis on teachers’
answers from post-tests. Two raters coded each incorrect answer independently,
reaching near-perfect agreement (Cohen’s Kappas above 0.86 for all items).

5 Results

5.1 RQ1. Can SmileyDiscovery Support K-12 Teachers to Carry
Out ML-empowered SD?

Completion of ML-empowered SD Learning. 10 out of 14 teachers successfully
completed all SD questions and generated meaningful findings of dynamic inter-
actions between ecological attributes through cluster analysis. Two teachers
needed to further articulate relationships identified, while the rest two didn’t
answer the last question for further conceptualization.

The numbers of ecological attributes involved in the investigation show that
teachers naturally started with a more exploratory style by looking out attributes
as much as possible. Then they reduced the scope as more evidence emerged from
the entire dataset. During the initial investigation, 10 out of 14 teachers ended
up with clusters sharing high similarity for more than four out of six ecological
attributes. After automatic clustering, 10 out of 14 learners narrowed down to
fewer attributes most strongly supported by data.

The numbers of different clicking behaviors show that teachers went through
all ML components, with more frequent interactions for some of them than
others. Specifically, teachers spent much time on manual clustering for initial
investigation. On average, they selected 17.43 (SD =10.21) field sites to compare
with two representative field sites, removed 9.07 (SD=10.54) field sites that
are not similar enough, and reserved 8.36 (SD =2.34) field sites for pattern
interpretation. In comparison, teachers roughly played with different values of
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k for automatic clustering. They tried less than one new k-value (M=0.71,
SD =0.99) in addition to the two rounds required by the instruction.

Patterns in Successful Completions. We identified two patterns in hypothesis
development. (1) Iterated initial hypotheses (N =7): Hypotheses became more
specific or more inclusive from initial to further conceptualization. E.g., one
teacher initially hypothesized that “latitude and mean temperature are related”.
In the end, she collected evidence for “different latitudes influence the rest of
the ecological attributes a lot”. (2) Generating new findings (N =3): Original
hypotheses were rejected, and new ones were proposed through investigation.

Teachers who successfully completed interacted more with manual clus-
tering (selection: M =17.70, removal: M =8.70) than those who didn’t (selec-
tion: M =4.06, removal: M = 3.56). In further investigation & conceptualization,
teachers who successfully completed switched between Smiley stacks and cen-
troids (M =9.5) more than those who didn’t (M =4) and compared centroids
(M =5.2) more than those who didn’t (M =1.5). These indicate the importance
of an extensive engagement with similarity computation and sufficient pattern
interpretation for generating meaningful findings.

5.2 RQ2. Can SmileyDiscovery Support K-12 Teachers to Design
SD Learning Activities?

Diversity of Teaching Ideas. 37 out of 46 teaching ideas were identified as quali-
fied, across science (N = 31), mathematics (N =4), and social studies (N =2). For
science subjects, we identified 11 out of 13 NGSS [45] core disciplinary ideas, such
as biological evolution and engineering design. Three primary learning objectives
are identified from the teaching ideas: (1) categorize complex phenomena into
groups and describe the patterns (e.g., discover biological patterns in different
organisms); (2) understand interactions between different attributes within a
system (e.g., investigate relationships between temperatures, humidity, surface
types, and bacteria found in different locations); (3) identify the factors most
relevant to cause the change/development of a system (e.g., investigate organism
traits in different environments and find out which are more critical for survival).
These results suggest SmileyDiscovery’s pedagogical potential to fulfill a variety
of K-12 STEM learning objectives aligned with the curriculum.

Teachers’ Fulfillment of ML-SD Connections. Topics of teacher-designed lesson
plans are (1) construction materials for flood resistance, (2) biological character-
istics & evolution, (3) influential factors to income, and (4) risk factors for heart
disease. Two researchers applied the EQuIP rubric [45] and confirmed each lesson
plan’s alignment with NGSS standards [46]. Patterns in the ML-SD connections
applied by teachers are analyzed (Fig. 4). First, similarity computation is used
for conceptualization, different from example SD activities. Teachers preferred
hypothesis generation through abduction based on a small amount of data rather
than prior knowledge. E.g., group 4 asked students to generate initial hypotheses
by observing factors’ puzzling impacts on heart disease risk. However, acceler-
ating hypothesis generation by ML-revealed patterns is missing from teachers’
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design. Second, automatic clustering is frequently used for investigation. Two
groups designed iterative investigation from small to large datasets. Group 3
proposed to run clustering with different sets of attributes, then compare results
from each trial to refine hypotheses of what factors influence a person’s income
the most [4,51]. Moreover, all groups added a new design for prediction, such as
predicting heart disease risk to evaluate the refined hypothesis.
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Fig. 4. ML-SD connections identified in four teacher-designed lesson plans.

Teachers’ Perceptions Toward ML-empowered STEM Teaching. Teachers appre-
ciated SmileyDiscovery’s novelty as a teaching tool as it makes the large data
accessible for K-12 students for pattern exploration and interpretation (N =14),
offers a playful learning experience to engage students (N=10), low barrier
to entry (N=12), and can be applied in various STEM subjects (N=13).
After designing an SD learning activity on what factors influence a person’s
income, one teacher expressed her wish to conduct the learning activity with the
Advancement Via Individual Determination (AVID) program she is teaching: “If
we do create it for real, I can do it with AVID!” Nevertheless, teachers expected
to gain a deeper understanding of ML methods (N=5) and ML-empowered
instruction design (N =7) before implementing it in actual classrooms.

5.3 RQ3. Can SmileyDiscovery Support Learning ML?

The mean differences of all questions between pre- and post-tests were normally
distributed at an alpha level of 0.05. A paired-sample t-test showed significant
increases (Table 3) from pre- to post-test for four k-means clustering concepts:
similarity computation, centroid, clustering process, evaluating values of k with
intra-&inter-cluster pattern interpretation. This suggested that SmileyDiscov-
ery successfully supported teachers to gain a rapid understanding of k-means
clustering while applying it for SD. The answers indicate some misconceptions.
For similarity computation, five teachers only addressed the subjectivity that
the decision-making changes based on different criteria. For evaluating values of
k, nine teachers didn’t demonstrate comprehensive procedures, such as using a
centroid to represent a cluster without considering intra-cluster variations.
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Table 3. Paired t-test results for pre- and post-tests (N =18)

Questions (Scores range 0-3) Pre-test | Post-test | t-test | p
M |SD M |SD
What makes two multidimensional 0.31/0.491.50 | 1.23 | —4.26 | 0.001
datapoints similar or dissimilar?
What is the centroid of a cluster of [0.891.08|1.75|1.19 | —2.67 | 0.031
data points?
Order the major steps for the 0.97 1 0.60| 1.56 | 0.78 | —3.58 | 0.002
K-means clustering algorithm

How to decide which value of k gives | 0.25|0.49|1.14 | 1.04 | —4.05 | 0.001
better clustering results?

6 Discussion and Future Work

SmileyDiscovery aims to bridge the gaps in ML-enhanced & curriculum-aligned
STEM learning [29,48] for K-12 students and teachers with limited computing
backgrounds [2,52]. Results show that K-12 teachers applied ML to discover
meaningful scientific findings and simultaneously understood related ML con-
cepts and methods. Teaching ideas and lesson plans show SmileyDiscovery’s
pedagogical potential in diverse K-12 STEM subjects. Teachers also reported
that SmileyDiscovery is an innovative and playful way with a low entry barrier
to “explore data and draw connections with visualization” .

Informed by the study findings, we identified three key design implications for
more effective ML-empowered SD. First, it’s critical to design efficient scaffold-
ing for ML visual analytics [12,36], as teachers novice to ML tended to carry out
less sufficient investigation and synthesis of ML-generated patterns. For exam-
ple, immediate feedback [23] can be designed to address common challenges
in analyzing ML-generated results, such as outlier interpretation and consid-
ering intra-cluster variations while interpreting inter-cluster patterns. Second,
advanced design to support converting visual representation (e.g., Smiley) to
data is needed to support efficient sense-making in the context of subject matter,
as teachers reported that the frequent manual Smiley-data translation was over-
whelming when interpreting the ML-generated patterns. The advanced design
may involve automating such non-salient & routine tasks [37] to reduce cog-
nitive load for SD, which already requires high working memory [22]. Third,
trial-and-error should be encouraged by a more inviting design for exploratory
ML-enhanced investigation [20], as teachers with better SD performance experi-
mented with more Smileys for similarity computation during manual clustering.

In the teacher-designed learning activities, no teacher applied automatic clus-
tering for conceptualization, indicating certain biases introduced by example SD
activities. A customizable authoring system can be designed to provide person-
alized recommendations of a list of potential ML-SD connections for teachers
to select from based on their teaching objectives. Besides, teachers’ after-study
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reflection shows a need to reveal more advanced mathematical knowledge about
ML methods: “While I can conceptualize the process, the mathematical compu-
tations in the analytic is a bit abstract to me.” Technical tutorials, such as an
interactive workbook [47], can be embedded as supplementary supports.

Limitations and Future Work. As a preliminary study to explore an innova-
tive system [19], our work has several limitations. First, COVID-19 interruption
and remote participation constrained data collection and undermined teachers’
engagement. Second, the study didn’t include a control condition. Thus, our next
step is to evaluate the educational effectiveness of an improved SmileyDiscovery
on students’ learning of scientific knowledge and skills, compared to traditional
computer-supported SD learning environments. For more effective and accurate
science learning, a component to review the main takeaways can be added at
the end of an ML-empowered SD learning activity. Besides, we plan to extend
SmileyDiscovery with other similarity-based and supervised ML algorithms [50],
engaging learners to derive evaluable scientific laws through SD.
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