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ABSTRACT
There is an increasing need to prepare young learners to be
Artificial Intelligence (AI) capable for the future workforce
and everyday life. Machine Learning (ML), as an integral
subfield of AI, has become the new engine that revolutionizes
practices of knowledge discovery. Making ML experience
accessible to young learners, however, remains challenging
due to its high demand for mathematical and computational
skills. This research focuses on designing novel learning en-
vironments that help demystify ML technologies for K-12
students, and also investigating new opportunities for maxi-
mizing ML accessibility through integration with scientific
discovery in STEM education. We developed SmileyCluster -
a hands-on and collaborative learning environment that utilizes
glyph-based data visualization and superposition comparative
visualization to assist learning an entry-level ML technology,
namely k-means clustering. Findings from an initial case study
with high school students in a pre-college summer program
show that SmileyCluster leads to positive change in learning
ML concepts, methods and sense-making of patterns. Find-
ings of this study also shed light on understanding ML as a
data-enabled approach to support evidence-based scientific
discovery in K-12 STEM education.
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Figure 1. Two students interacting with SmileyCluster system.

INTRODUCTION
Children growing up in the Artificial Intelligence (AI) era - the
so-called “Generation AI” [16] - will be most impacted by the
ever-growing advances in AI technologies. Machine Learning
(ML) is an integral subfield of AI that helps computers iden-
tify patterns and make predictions from empirical data [65].
As the data revolution accelerates, ML plays an increasingly
important role in everyday life such as education, healthcare,
and transportation. It is critical, therefore, that young learn-
ers acquire sufficient ML literacy and become accustomed
to data-enabled problem-solving in order to navigate in this
increasingly technical and intelligent world.

AI education traditionally has a high demand for mathematical
and computational skills. Emerging learning environments
such as Cognimates [13] and eCraft2Learn [31] have shown
promising learning experiences for young students to experi-
ment with key AI technologies such as text understanding, im-
age and speech recognition, robot control and model training
[57]. Obstacles remain, however, to make AI education more
accessible for K-12 students with diverse STEM education
backgrounds. First, recent studies show that students with lim-
ited programming experience [31], especially those from low
and medium socio-economic schools [13], struggle to advance
their AI understanding. This is because most of existing K-12
AI learning environments require knowledge of block-based
visual programming such as Scratch that not all students pos-
sess due to wide variation in K-12 CS education [61]. Second,
while students can learn the basic training-testing pipeline of



how machines learn from data, the underlying ML concepts
(e.g. multi-dimension feature space, similarity comparison)
and detailed ML methods (e.g. clustering, classification) re-
main inside the black-box. Understanding these concepts and
methods will help learners not only make meaningful ML ap-
plications but also understand the basics of how ML works.
The latter is critical to prepare young learners to be more sen-
sible with respect to decision-making and ethical aspects of
AI such as trust and fairness [24].

This study aims to maximize learning opportunities of ML for
students with diverse STEM skills, and look inside the black-
box to demystify ML. We propose to explore (1) design space
of data visualization [11], hands-on exploration [36] and col-
laborative learning [8], which have shown promising benefits
for deeper understanding of abstract and complex concepts via
diagrammatic reasoning, conceptual metaphor, and offloading
cognition for young students [23, 40, 41, 38, 30]; and (2) ped-
agogical opportunities of ML-empowered scientific discovery.
The natural connection between ML and practices of science
such as “analyze and interpret data”, “describe patterns and re-
lationships”, “make sense of phenomenon” [9] align well with
the global urgency of cohesion of STEM education [32]. Mean-
ingful STEM contexts, in turn, may motivate AI education
through a sense of authenticity and real-world applicability
[64]. This study focuses on two research questions:

(1) RQ1: How to design learning environments that support
understanding the ML concepts and methods of k-means
clustering for young students with diverse mathematical and
programming skills?

(2) RQ2: How can the ML learning environment enhance sci-
entific discovery in STEM contexts?

We developed SmileyCluster (Fig. 1) - a web-based collabora-
tive learning environment that supports (1) learning basic ML
concepts and methods involved in a particular ML technology
- namely k-means clustering, and (2) sense-making of scien-
tific phenomena and scientific inquiry such as question asking,
justification and argument [51]. The rationale for choosing
k-means clustering as the initial study are three-fold. First,
k-means clustering is one of the most common similarity-
based ML methods and is central to basic ML concepts of
multi-dimension feature space and similarity comparison. Un-
derstanding these concepts may lead to better understanding
of other similarity-based ML methods such as k-nearest neigh-
bor classification, information retrieval and anomaly detection.
Second, k-means clustering is widely used in scientific knowl-
edge discovery across STEM subjects such as biology [33]
environmental science [1], and chemistry [45], which may
lead to a tight connection with K-12 STEM learning. Third,
due to the unsupervised nature of k-means clustering, it may
promote data exploration and hypothesis generation of scien-
tific phenomena [14], both of which are key scientific inquiry
practices in K-12 STEM classes [9].

SmileyCluster introduces a novel conceptual metaphor called
face-overlay that addresses the two main obstacles for K-12
students to learn k-means clustering: efficient similarity com-
parison (due to lack of knowledge of Euclidean distance on
multi-dimension feature space [18]), and global understanding

of data as a whole (as commonly struggled by young learners
[3]). Face-overlay is inspired by face glyph data visualization
[7, 17], which translates each attribute value of a data point to
a visual element of a cartoon face such as position of eyes and
shape of mouth [63], and also by superposition comparative
visualization [23], which shows different visual objects in the
same space through information overlay.

As an initial investigation, we conducted a case study with
high school students in a data science class of an on-campus
pre-college summer program. Findings of this study provide
rich evidence that (1) the face-overlay metaphor effectively
supports similarity comparison and global understanding of
data for high school students; (2) the SmileyCluster system
positively supports learning and interpreting k-means cluster-
ing. In addition, the participants also carried out meaningful
scientific inquiry behaviors through interaction with the Smi-
leyCluster system in pairs. This research contributes new
knowledge in three-fold:

(1) Create a new learning environment to make k-means cluster-
ing accessible to young learners with limited mathematical
and computational skills.

(2) Provide a novel conceptual metaphor to inform the design
of future learning environments for similarity-based ML
technologies.

(3) Gain insights about the role that ML can play in offering
new learning opportunities of scientific discovery in K-12
STEM education.

RELATED WORK

K-12 AI education
Thanks to recent initiatives such as AI4K12 and AI4All, there
are emerging learning environments that expose K-12 students
to high-level AI concepts in areas such as text understand-
ing, object recognition, speech recognition, and robot control
through engaging activities such as gameplay, robot construc-
tion, drawing and interactive visualization [52, 4, 57]. Among
the five big ideas of AI education proposed by the AI4K12
initiative, "computers can learn from data" has the most direct
connection with knowledge discovery. Under this big idea,
however, only a very narrow subfield of ML, namely image
processing, is supported by existing AI learning technologies.
This reveals a vast gap of effective learning scaffolding to help
young learners obtain basic ML concepts and technologies that
support a diverse range of pattern recognition and inference
activities, which in turn lead to discovery and constructing
new knowledge across different subject domains.

ML-Empowered K-12 Science Practice
In a recent study, Zimmermann-Niefield and colleagues [67]
connected ML and youth science education through modeling,
which is a key set of scientific and mathematical practices
defined in the High School Common Core State Standards
(CCSS) [18] and Next Generation Science Standards (NGSS)
[9]. They demonstrated an approach that supports participants
to build and evaluate ML models through sports play and scien-
tific exploration. Besides modeling, more connections can be
used for the design of AI-empowered learning environments
for K-12 science practices, such as analyzing and interpreting



data, asking questions, constructing explanations and engaging
in argument [9, 2]. Our research proposes a design solution
that stimulates more K-12 students’ science practice behaviors
described above by learning basic ML concepts and methods.

Data Visualization
Data visualization is an umbrella of technologies that facilitate
knowledge discovery and sense-making through visual data
exploration [11] and diagrammatic reasoning [19, 40]. In addi-
tion, data visualization is also commonly used to explain ma-
chine learnt patterns and models, such as clustering, decision
trees, neural networks, and Bayes models [11, 15]. Glyph-
based visualization is a special type of data visualization that
maps individual data points to a familiar graphical representa-
tion such as a star, stick figure, leaf, bug or weathervane [63,
20]. Face glyph [7, 17] is a particular type of glyph-based data
visualization that takes advantage of people’s high processing
capacity and sensitivity to human faces, and translates each
attribute value of a data point to a visual element of a cartoon
face such as position of eye, slant of eyebrow, shape of mouth,
etc. Researchers have explored opportunities of using face
glyphs to help people carry out visual reasoning in domains
like ecology [34], sport [54], health assessment [26], mar-
keting [5] and software security [60]. Children are naturally
drawn to faces within the first few months after birth [35],
and keep improving visual research ability of faces. While
previous research shows that face glyph provides an alterna-
tive learning method for students in the science classroom to
compare agricultural products in different regions [43], we are
not aware of learning environments that apply face glyph to
support learning of ML concepts and use of ML-empowered
methods to support scientific discoveries.

Comparative visualization
Comparison is a common task in data visualization, with two
well-established visualization methods - juxtaposition and su-
perposition [23]. Juxtaposition design arranges individual
objects for side-by-side comparison, while superposition de-
sign shows different objects in the same space through efficient
information overlay. Compared to juxtaposition, which relies
on frequently shifting attention between objects and is hard
to scale to a large number of objects perceptually, superposi-
tion minimizes memory requirements and attention shifting
by integrating multiple facets of information within one co-
herent visual space [58]. It is widely used in geographical
information systems, which utilize the map-overlay metaphor
to superimpose different thematic layers of information such
as roads and hydrology [66]. While glyph-based visualization
mainly relies on side-by-side comparison, we argue that su-
perposition is particularly suitable for supporting similarity
comparison as data represented in individual glyphs are "simi-
lar enough to one another that they can be viewed on the same
plane to detect similarity and difference between objects" [23].

Hands-on and Collaborative Learning
Constructivism [46] and distributed cognition [25] theories
emphasize the active process of meaning-making in learning,
particularly through perception, manipulation, and social in-
teraction with visual representations [50, 47].Manches and

O’Malley (2012) argue that hands-on learning with digital
manipulatives can promote knowledge acquisition through
conceptual metaphor that bridges abstract concepts with per-
ceptual (e.g. size, color) and manipulative properties (e.g. pick,
contain) of objects that people are familiar with, therefore of-
floading cognitive tasks and enabling additional attention [28,
44, 37]. In addition, research shows that social interactions
facilitate students’ conceptual change in learning complex
concepts [21] and construction of new scientific knowledge
[22, 49, 29] through scientific argumentation and false infer-
ence evaluation [39, 48]. In this study, we explore to what
extent direct manipulation of data points can facilitate learning
of abstract ML concepts and support scientific discovery in
collaborative learning.

DESIGN OF SMILEYCLUSTER

Learning Goals and Barriers for K-means Clustering
SmileyCluster aims to (1) support learning of entry-level ML
concepts (multi-dimension feature space, similarity) and k-
means clustering method (centroid computation, evaluate clus-
ter number ‘k’ based on intra-cluster cohesion (similarity of
data points within a cluster) and inter-cluster separation (differ-
ence of data points between clusters)) [56]; (2) support learn-
ing of pattern-interpretation (explain clusters, shared features
within the same cluster, and differentiating features between
clusters); and (3) enhance scientific inquiry learning behav-
iors such as question asking, explanation, and argument [9].
K-means clustering is a ML method by which each data point
is assigned to the cluster with the closest centroid. We identify
two main learning barriers for young learners to obtain these
key ML concepts and related k-means method:

1. Similarity comparison of multi-dimension feature
space: Real-world phenomena such as species and habitats
require multi-dimensional features to describe their char-
acteristics, but the common core high school mathematics
curriculum only covers patterns of association in bivariate
data [18]. Besides, Euclidean distance on multi-dimension
feature space is a basic similarity comparison approach, but
high school students are only introduced to two-dimensional
(plane) Euclidean geometry [18].

2. Global understanding of a dataset: It’s often difficult
for young students to develop a global understanding of a
group of data as a whole. For example, research in math
classrooms shows that middle school students are inclined
to develop local comparisons of pointwise differences of
data, while needing additional scaffolding to build a global
view of the dataset [3].

Face-overlay Conceptual Metaphor
Inspired by the face glyph and superposition comparative vi-
sualization, we propose the face-overlay conceptual metaphor
to provide vivid explanations of similarity comparisons of
multidimensional features and to make patterns more readily
interpreted. We designed face glyph in the form of popular
emoji-style faces (Fig. 2(a)) that helps comprehension, mem-
ory, and communication due to people’s familiarity with facial
features, and the simultaneous representation of a global view
of all the features of a single data point.



(a) Overview of face-overlay conceptual metaphor (b) SmileyCluster learning flow

Figure 2. An illustration of face-overlay conceptual metaphor and corresponding SmileyCluster learning flow.

Face glyph and cluster design
Based on existing face glyph methods [7, 12, 53], we selected
16 facial features: eye (eccentricity, angle, separation, vertical
position, size), pupil (size, position), brow (slant, size, vertical
position, horizontal position, density), mouth (vertical position,
curvature, width, opening size), while excluding controversial
features such as nose width and length [17], as well as hair
and face shape features for simplicity. Although real-world
phenomena may require a higher dimension of features, we
argue that the current face glyph representation is sufficient to
help novice learners to obtain basic ML concepts and methods,
and experience new approach for authentic scientific discovery
by interpreting machine learnt patterns.

For cluster representation, we adapted the structure-driven
placement [62] and used radial placement to arrange individual
faces belonging to the same cluster around the center face,
which is a synthesized face glyph that represents the average
features of the cluster, at various distances corresponding to
the similarity between the individual face and the center face).

Overlay design
Face-overlay supports both pair-wise comparisons between
data points in pairs and groups by drag-and-dropping the face
one by one on top of another (pair-wise), or a single click
to make faces of the same cluster stack together. When they
are stacked, every face is semi-transparent, with the sum of
opacities equal to 100%.

1. Pair-wise overlay aggregates two faces to contribute to
learning basic ML concepts of similarity comparison
(Fig. 2(a)(i)), interpreting inter-cluster patterns (e.g. com-
paring centroid faces of different clusters), and identifying
an appropriate k cluster number through inspecting inter-
cluster separation (Fig. 2(a)(ii)).

2. Global overlay aggregates multiple faces from the same clus-
ter (Fig. 2(a)(iii)), to address learning challenges for young
students to develop a global understanding of a dataset as
a whole, by revealing richer information about the mean
and deviation of the dataset through the level of blurri-
ness of each facial feature. Global overlay is designed to

support learning of centroid computation (average repre-
sentation of all the data points belonging to the same clus-
ter) (Fig. 2(a)(iii)), interpreting intra-cluster patterns (e.g.
shared features within the same cluster), and identifying ap-
propriate k cluster number through inspecting intra-cluster
cohesion (Fig. 2(a)(iv)).

SmileyCluster Design
Based on the face-overlay conceptual metaphor, we devel-
oped SmileyCluster, a web-based learning environment that
supports hands-on, playful and collaborative ML learning ac-
tivities. To fulfill the learning goals of SmileyCluster, which
aims to support students to understand and apply k-means clus-
tering in science contexts, while maintaining a gradual learn-
ing curve, we design the learning flow as shown in Fig. 2(b).
Following the learning flow, we describe the user interface
matched with each learning goal that aligns with key learning
components in cluster analysis.

Introducing a STEM context
The dataset used for the k-means analysis is the seed data
adapted from UCI Machine Learning Repository [6], which is
related to STEM field and the clustering result is validated by
scientists. We started with the introduction of the dataset and
how the data was collected.

ML-C1: Multi-dimension feature space
Fig. 3(a) shows two beginning steps while using the system.
The interface design aims to achieve two goals: (1)introducing
the dataset and the face mapping mechanism; (2) conveying
the concept of multi-dimensional feature space.

ML-C2: Similarity comparison
The multiple-choice questions are designed to teach students
about similarity comparison. While doing multiple choices,
the face-overlay method is provided and serves as a way to
help comparison. We provide a drag-and-drop function to put
one face on the other (Fig. 3(b)).

ML-M1: Clustering process
The interface of grouping faces (Fig. 3(c)) is designed for
students to explore the clustering process. By drag-and-drop,
students can stack the faces that they think are similar together.



Figure 3. SmileyCluster Detailed Design.

It is a process for students to collaboratively discuss strategies
to try grouping the faces and decide the k number.

ML-P1: Basic cluster interpretation
Following the face grouping activity, the system provides the
clustering result generated by machine learning(k=2). We
design the visualization specifically for the clusters of emo-
jis. The cluster relationship is straightforward. The distance
between one face and the center is generated according to
the distance between data points. At this step, students are
required to discuss in pairs their interpretation of the clustering
results. The clusters are movable, in order to provide some
freedom and fun while they discuss.

ML-M2: Centroid
Following the interpretation activity, we put a question mark
on the center of each cluster, and raise a simple question for
the students: Can you guess which center face belongs to
which group? (Fig. 3(d)) By raising the question, we aim to
bring up the centroid concept. After discussing, students can
click on the question mark to reveal the answer.

ML-P2: Inter-cluster and intra-cluster pattern interpretation
We design two pages (Fig. 3(e)) to allow students to explore
shared features within a cluster (left) and differentiating fea-
tures between different groups (right). The students are asked
to note down shared/differentiating facial features, as well
as the corresponding seed dataset features to support sense-
making of patterns in the actual science context.

ML-M3: Appropriate k cluster number
There are two pages (Fig. 3(f)) designed for students to decide
the best number for k: (1) viewing different clustering by tog-
gle the k number on top of the page (left); and (2) comparing
the center face and combined faces of each cluster (right). The
center faces are designed to help students be aware of the

inter-cluster separation and the combined faces are designed
to convey intra-cluster cohesion.

STUDY DESIGN
We conducted an initial investigation through a user case study
with high school students to understand how effective Smil-
eyCluster is in supporting (1) understanding the ML concepts
and methods of k-means clustering,(2) sense-making with
patterns, and (3) engaging students in scientific inquiry.

Participants
We recruited eight participants through the program coordi-
nator of the on-campus pre-college summer program with a
total of 12 students enrolled. There were 5 female and 3 male
students, between 15-17 years old, with 5 domestic and 3
international students all with sufficient language skills for
the class. The pre-study survey showed that 7 students have
more than one year of programming experience at school or
at home. Eight participants had a variety of AI knowledge
or experience, through involvement in a Robotics club, some
research experience in AI topics, or learning about the history
of AI. We numbered our participants and will refer participants
from P1-P8 in the following sections.

Procedure
The study took place in an on-campus computer lab and lasted
about 2.5 hours, facilitated by one course instructor and four
researchers. When the students showed up in the classroom,
one researcher arranged for students who did not consent to
be involved in the study to sit separately with participants of
the study. Then the participants sat in pairs of their choice
in front of a computer. The study procedure was (1) 25 min-
utes class instruction about AI and general difference between
supervised and unsupervised learning, without revealing any
content about clustering; (2) 15-min pre-study questionnaire
about students’ background in machine learning and cluster



analysis; (3) 40-min interaction with the system; (4) 15-min
post-study questionnaire and (5) 30-min focus group inter-
view. All students in the class took part in the same learning
activities, except we did not collect any observation data from
students who did not take part in the study.

Data Collection
The research sites were set up by four researchers before the
study. The web-based interface was set up on desktops in a
lab that accommodated all 12 students in the summer camp,
and each desktop was shared by a pair of participants for col-
laborative activities. We collected surveys, interviews, screen
recordings, and video recordings of the system interactions
from 8 participants. We set up two Canon Camcorders at
the front and back of a desktop for each pair of participants
to video record participants’ interaction with each other, and
interaction with the system accordingly.

Measures and Data Analysis
We measured the learning effects of SmileyCluster in sup-
porting learning k-means clustering concepts and methods,
sense-making of patterns, and scientific inquiry, through a
combination of pre-post questionnaires for learning gains, ob-
servation of learning behaviors while participants interacted
with the system and with each other, and semi-structured focus
group interviews.

ML concepts, methods, and sense-making of patterns
Learning gains: We conducted pre-post questionnaires with
written answers to questions relating to clustering, similar-
ity comparison, center point, k-means clustering process and
choosing an appropriate k number, and sense-making of pat-
terns. Each answer was assigned 0 to 3 points according to the
pre-designed rubric by researchers. Researchers graded the
answers by matching participants’ answers to the keywords
listed in the rubric, with each match worth 1 point. Two re-
searchers graded the questionnaires and reached inter-rater
reliability with Cohen’s kappa = 0.85 and 0.88 accordingly
for pre- and post-study questionnaires. The final score of each
question was computed by the means of two graders.

Learning behaviors: Learning behaviours are measured by
two-fold: (1) we recorded participants’ text-based answers
to in-app questions as described in the section of “Smiley-
Cluster Design” with ML concepts involved in [ML-C1, C2],
methods in [ML-M1, M2, M3], and sense-making in [ML-
P1, P2]; and (2) we recorded and jotted observation notes on
participants’ verbal behaviors on scientific inquiry episodes,
including "question asking", "uncertainty", "argument", "jus-
tification", "suggestion", "sharing findings", "hypothesis gen-
eration", "evaluation", and "agreement" [51]. We adopted the
qualitative case study method [10, 55], to conduct a holistic
inquiry that investigates ML learning behaviours while using
SmileyCluster. For in-app answers, we compared group’s an-
swers to multiple choice and open-ended questions, and with
the suggested answers formulated by four researchers. For
scientific inquiry learning behaviours, four researchers tran-
scribed recordings into scripts, integrated observation notes
with scripts to page-by-page analysis, and conducted open
coding [10]. To establish a common set of codes and themes,

we assigned two researchers to apply open and axial coding
[10] to the same subset of transcripts independently, and then
established a common understanding with a shared qualita-
tive codebook. Each pair of researchers compared, discussed
and stabilized the codes to reach 90% agreement. We then
constructed cases [55, 10] for each research question in a sec-
ond coding cycle. Each case was bounded by researchers’
reflections on observational notes for each group, and by the
page-by-page analysis for each learning component. Two re-
searchers were assigned to synthesize the cases and generate
the theme.

Semi-structured focus group interview: We obtained in-
sights about participants’ cluster learning experience ("When
learning clustering analysis, what challenges you the most?"),
glyph-based data visualization design ("Besides the face emoji,
what other objects could you think of to map the multiple di-
mension data to?"), and the limitation of ML-based clustering
("Do you think that clustering analysis can always provide the
best group result, or could the analysis have errors?"). Four
researchers transcribed, coded the scripts, and established com-
mon set of codes and themes in a shared qualitative codebook.
Each pair of researchers compared, discussed and stabilized
the codes to reach 93% agreement. We analyzed interview
scripts using the thematic analysis [59] approach to determine
the high-level themes of participants’ answers.

RESULTS
As shown in Table 1, results of the pre-post learning gain
questionnaire indicate that the SmileyCluster system supported
participants’ learning of key ML knowledge components of
k-means cluster, with a total score of the post-test increased
by 7.13 points compared with the pre-test result.

Learning Outcomes for ML Concepts and Methods
Multi-Dimensional Feature Space
The face mapping mechanism appealed to and engaged partic-
ipants in exploring and discussing the mapping relationship
by moving the slider bar of the feature value to explore how
each seed attribute is mapped to a facial feature (ML-C1 in
SmileyCluster). For example, P7 and P8 moved each face
feature between min and max values, and paused at the max
values. P7 pointed, "Look, I dragged it to extreme (values)”.
P8 laughed, and dragged another feature to extreme value.

We also found that participants were able to apply the feature
mapping knowledge to other scenarios. When being asked for
other objects they could map the features to during the inter-
view, the participants provided answers such as "digital lego
blocks", "Minecraft", "Cartoon characters", "trees", "stars",
and "animal body or face".

Similarity Comparison
The pre-post learning gain questionnaire shows an increased
understanding of the concept of similarity (Q1 to Q3). The
correct rate for choosing the most similar face is 50% in the
side-by-side comparison mode, and 100% in the overlay com-
parison mode with quicker completion. This shows that the
face-overlay metaphor can efficiently support pair-wise visual
comparison (Fig. 3(b)).



Questions (Scale 0-3) MeanPre(SD) MeanPost(SD) MeanDi f f
Q1. What does it mean to cluster a dataset? 1.06±1.21 2.31±0.88 1.25
Q2. What is the importance of similarity when clustering a dataset? 0.56±0.90 1.75±0.89 1.19
Q3. What makes two data points similar or dissimilar? 0.31±0.88 1.75±0.71 1.44
Q4. What is the center point of a group of data points? 0.63±0.79 2±0.93 1.37
Q5. Could you order the major steps for the k-means clustering algorithm? 0.88±0.83 1.13±0.99 0.25
Q6. Given two different numbers of groups for clustering the same dataset
(e.g. one divides the dataset into 2 groups and one into 3 groups), how do
you decide which number of groups gives a better result?

0.25±0.46 1.88±0.99 1.63

Table 1. Participants’ learning gain scores in pre-test and post-test in 0-3 point scale.

We also found two different visual comparison strategies of
pair-wise data points. With the global similarity comparison
strategy, participants tend to compare the facial expression of
the whole face. Group 2 used the global comparison strategy.
P4: "(The answer is) A, because (the face) is mostly going
down." P3: "How about that one [points to C]." P4: "Hmm..it
is definitely not B. I think C looks smiley instead of less worried
than A and the [target face] also comes worriedly."

With the local similarity comparison strategy, participants tend
to compare by observing specific features, such as the eye size
and mouth curve, in a sequential manner. Groups 1, 3 and
4 adopted this strategy. For example, in group 3, P6: "How
about this one? [points to A] The mouth is big and upside-
down. And..this one? [points to C] How about this one? I feel
like C. The eyebrows are the same size, the eyes are the same
size. It is just..the mouth (is different)."

Group 2 adopted the global strategy and selected the right
answer, while the other three groups adopted the local com-
parison strategy with mixed results. However, we observed
that groups adopting a local comparison strategy showed high
uncertainty in comparing each feature and making decisions.

Centroid
The pre-post questionnaire shows an increased understanding
of the concept of centroid (Q4). All four groups made the right
choice of the center face (ML-M2 in SmileyCluster). We found
that participants are able to identify the relationship between
the center face and the cluster it belongs to. We observed
some participants drag the cluster close to the average face
for comparison. They also tended to discuss the center face
by dragging two clusters closer to each other. P2: "We’ll put
the cluster near the center face [drag the cluster to the center
face]. Oh, it’s kind of similar." P1: "yeah." P2: "The mouth
of centroid is a little all over the place. Pretty much the same,
just like cleaned up." P1: "Yeah. I’d say it’s in the middle." P2:
"Yeah, it’s in the middle, so it is the average."

We also observed that participants identified the outlier of
the cluster by comparing between clusters. For example, P6:
"(The faces of this cluster) are kind of similar. I mean the
outline of the shapes of all faces. But this one (point to a
face that is dissimilar with the center face), this face’s eye
size changes so much." In this case, participants dragged the
outlier face when compared with the other cluster, and found
the face looks more similar to the other cluster.

Clustering Process
The pre-post learning gain questionnaire shows a weak learn-
ing effect for the procedure of k-means clustering (Meandi f f =
0.25). Participants show diverse grouping strategies when man-
ually clustering the faces (ML-M1 in SmileyCluster, Fig. 3(a)).
Group 1 chose to randomly pick a face to start. This approach
ended up with many groups. Group 2 and 3 adopted the
global comparison strategy as used in the pair-wise compari-
son task. For example, P3 stacked the faces together because
"those faces are scary and skewed", and when group 2 finished
sorting some faces, they concluded with their observations,
"(Those faces) are getting progressively older and scarier".
Group 4, on the other hand, adopted the local comparison
strategy. They first identified an obvious feature, eye size, as
P7 mentioned, "Big eyes are easiest, and then small eyes."
And when they found the blurriness of two big-eyed faces
increased, they started to compare the mouth curve. Overall,
Group 2 and 3 performed the clustering task faster than Group
4, which indicates that the social familiarity of overall facial
expressions can help students to obtain a global understanding
of all the features of a data point simultaneously.

Appropriate k cluster number
The pre-post questionnaire shows the highest learning gain
in understanding the method of choosing the appropriate k
number for clustering (Meandi f f = 1.63). When asked to
choose the appropriate k number, all groups chose the right
answer for both pages, except that Group 4 made the wrong
choice in the first page. Although the correct rates are similar
before and after seeing the center face and aggregated face, the
evidence used by students to support their decision shows a big
difference. Before learning about center faces and combination
faces, all 4 groups decided based on intra-cluster similarity.
For example, P3: "I don’t know. I wanna say three." P4:
"Cause 4 has weird." P3: "No. The other thing is I don’t know
how much these are different than these. These are all very
similar... I said these should be here. But a lot of these are a
lot similar too. I think two might give a better average than
three. I am gonna say three and not anything else."

After learning about center faces and combination faces, all
4 groups took into consideration inter-cluster separation to
support their decision-making. For example, P6: "so these are
the center faces. They are way too dissimilar. Wait, ‘dissimilar’
between groups." ... P5: "I want to choose 3." P6: "Yeah, me
too. These are the center faces right? Yeah they are very
different. (Point to K=4) This is the only very different one but
the other three are similar. ... (Point to K=2) And they are not
focused."



Learning Effects for Sense-making of Patterns
Basic cluster interpretation
Participants are able to interpret the clustering result by look-
ing at the machine clustered result (ML-P1). Interestingly,
some students showed surprise about machine clustering re-
sults in comparison with the manual clustering the students
performed. For example, P2 commented, "Are you sure this is
what we built?", and P3 echoed "no". Then participants com-
pared the features of two clusters and interpreted the results
given by the feature mapping cheat sheet. P2 [pointing at the
screen]: "Oh, cool. [Points to cluster 1], these faces are all
kind of smiley." P1: "And then these faces [in cluster 2] are all
like spooky." P2: "Yikes." P1: "Faces in cluster 1 are all have
big eyes, meaning the seeds have big area." P2: "Yes, and they
all have about the same compactness."

Intra-cluster pattern and Inter-cluster pattern interpretation
Analysis of the written answers shows that all groups explained
shared features and differentiating features reasonably, with
sufficient association between the facial and seed features. The
example below shows a typical episode, reflecting how they
went through the facial features, and reached an agreement
through discussion. P1: "Greater eyebrow slant." P2: "Greater
mouth curve." [P1 is typing] P2: "Eyebrow length. Pretty
high. . . ?, I don’t know." P1: "Actually average eyebrow length.
Eyebrow height is lower. Actually, is it lower?" P2: "Pretty
high." P1: "It is a little lower (compared to the other face)."
P2 agreed and referred to the cheat sheet to interpret the result.
P2: "(the above features aligned with) large area, greater
perimeter. and greater compactness of seed..."

Group 1 reported the common facial features of the combina-
tion faces as: big eye radius, greater eyebrow slant, greater
mouth curve, avg eyebrow length, lower eyebrow height, nar-
rower mouth, avg mouth height. They translated these to the
seed data respectively as large area, greater perimeter, avg
compactness, shorter kernel, narrower kernel, avg asymmetry,
longer kernel groove. The four groups gave relatively similar
answers by comparing the cohesion and separation of features
and interpreting the result when applied to seed data, while
group 3 tried to interpret the results a step further: "We can
see that they have similar area, perimeter, compactness, and
kernel length. The kernel width, asymmetry coefficient, and
kernel groove length are all different".

With the glyph and global overlay design, participants can
compare the size of the blurred areas to make decisions on pat-
tern interpretation. While interpreting shared patterns within a
cluster, participants understood how the blurred areas repre-
sented variances of different features. For example, by com-
paring the width of blurred areas around eyes or mouths, they
decided the most significantly different or consistent features
to be counted into the pattern. It shows participants’ ability to
recognize parameters with relatively small variation range and
debate on whether it is significant enough to be selected as a
shared feature or a differentiating feature.

While translating the facial features to seed features, deeper
discussion and reasoning behind different seed patterns were
rare. One major reason could be that no authentic scientific
questions about the dataset were presented in this study. In

the current system design, the questions about pattern inter-
pretation are very simple and straightforward for high school
students, and we only asked them to check the cheat sheet and
map facial features they found back to seed features.

Scientific Inquiry Related Learning Behaviors
We investigated the scientific inquiry related behaviours during
the whole learning process and identified that their hands-on
exploratory learning generated opportunities for students to
engage in scientific discoveries, demonstrated by scientific be-
haviours such as suggestion, justification, question answering,
and showing uncertainty. Such scientific behaviours are rich in
human clustering, deciding the appropriate k cluster number
and pattern interpretation activities.

Constructing explanations
During manual clustering, all four groups discussed the strate-
gies to take and provide explanations for their solutions. For
example, P7 and P8 hesitated as to which face to start with. P7:
"You can group them based on their eyes first (suggestion), be-
cause big eyes are the easiest to identify (justification)." When
P8 struggled to find another one with big eyes, P7: "Look at
this one (points to the face), and this one (points to another
face)." (suggestion) P8: "But I am not sure." (uncertainty) P7:
"Why?" (question asking) P8: "These are relatively small eyes,
and you group them together." (Justification)

Obtaining, evaluating and communicating information
When selecting the best k number, there was uncertainty de-
ciding between k=3 and k=4. In group 2, P3: "I don’t know. I
wanna say three (groups)." (uncertainty and suggestion) P4:
"Cause 4 clusters look weird?" (question asking) P3: "No. The
thing is I don’t know how much these (faces) are different than
those (faces). These (faces) look all very similar.. I think 3
(groups) might give a better average than four. I am gonna
say three and not anything else." (justification)

Engaging in argument from evidence
When selecting the best k number from comparing the dissim-
ilar features in face-overlay, participants engaged in scientific
talk with argument. P8: "I think it may be this one [points to
the option k=3]." (suggestion) P7: "I don’t think so. I think it
is this one [points to the option k=4]." (argument and sugges-
tion) P8: "Because you can see, the eyebrows." (justification)
P7: "What?" P8: "The eyebrows [of three faces] are almost
a line. And [points to 4 groups], there are hundreds of lines
of eyebrows (meaning the blurriness is high when stacked).
(argument) And for the mouth, you can see, [3 groups] are
almost together" (justification) P8: "Right?" (uncertainty)

Analyzing and interpreting data
Participants engaged in interpreting the shared features and
differentiating features of faces and referring back to the origi-
nal seed dataset using the multidimensional feature mapping
relation table provided by the system. P1: "Does the “area”
mean [points to the stacked face and points to the cheat sheet],
big area of eyes? I think the right column talks about the
face and the left column talks about the seed. You know what
I mean?" (uncertainty and question asking) P2: [pointed to
“area” on the cheat sheet] "so (area of the seed) matches eye



radius." (sharing findings) P1: "And Greater eyebrow slant.."
P2: "Means pretty big kernel width of the seed."

When discussing eyebrow length, P2: "Eyebrow length,
pretty...I don’t know." (uncertainty) P1: "It should be aver-
age eyebrow length and lower eyebrow height. Actually is
it lower?" (justification and uncertainty) P2: "pretty high."
P1: "(The left face) is a little lower." P2: "(The above fea-
tures aligned with) large area, greater perimeter and greater
compactness of seed."

DISCUSSION
Overall, the results of the study show promising effect that
the face-overlay design metaphor is effective in supporting
the understanding of the fundamental ML concept - similarity
comparison on multi-dimension feature space. Building based
on face-overlay, the SmileyCluster system shows positive ef-
fectiveness in enhancing the understanding of the k-means
clustering ML method, sense-making of pattern in both the
face and seed contexts. We also observe that while engaged
in ML activities, participants carried out meaningful scien-
tific inquiry behaviors through discussing in-app questions,
expressing uncertainty, asking questions, offering suggestions
and justifications, and engaging in argument.

SmileyCluster in Supporting ML Learning
Participants increased their understanding of ML concepts and
methods after using SmileyCluster to learn cluster analysis,
evidenced by the increase of learning gains to different extents
in similarity computation, centroid, clustering, and selecting
the appropriate k cluster number. As the first concept of clus-
tering analysis, participants are able to explore the mapping
relationship between facial features and data values and apply
the concept to brainstorm other objects that could map the
multi-dimensional feature space, such as the glyph shaped
trees and block-based objects as lego blocks.

Face-overlay had the edge over side-by-side comparison in
supporting the pairwise similarity comparison. When learn-
ing about the similarity comparison using both side-by-side
comparison and overlay metaphor, four group pairs achieved
a 50% and 100% correct rate accordingly. Particularly, groups
that used the face-overlay version for pair-wise visual com-
parison made quicker decisions and were more accurate. This
seems to confirm the findings of Tufte[58] that overlay helped
participants with less attention shifting and lower memory
requirements than comparing data points side-by-side.

Global overlay supported the global comparison between
multi-dimension data points. When learning the centroid,
participants in group 3 identified the outliers by dragging the
cluster close to the center face and comparing the similar-
ity. Face-overlay also extended participants’ understanding
of intra-cluster cohesion and inter-cluster separation to eval-
uate the best k cluster numbers both in pair-wise and global
overlay. Before learning about the center and combination
of faces using overlay, four groups decided the choice of se-
lecting k based on intra-cluster cohesion, which compares the
similarity between data points within a group. P3 in group 4
showed initially high uncertainty in selecting the k number.
By learning about comparing the dissimilarity of center faces

using overlay methods, participants are able to facilitate their
decision making by observing the blurriness of stacked faces.
that overlay helped participants with less attention shifting
and lower memory requirements than comparing data points
side-by-side [58]. Participants demonstrated clear scientific
reasoning and adjusted their previous false inference evalua-
tion [39, 48] for selecting the k number after learning center
and combination of faces, which is achieved during scientific
discussion with peers. Such process supported the benefit
of collaborative scientific knowledge construction that new
knowledge construction occurs when individuals realize con-
tractions, inconsistencies and limitations of one’s perception
during interaction with peers [42, 27].

Participants were able to interpret patterns of the clustering
result, the intra-cluster, and inter-cluster. With the glyph de-
sign and global overlay design, participants compared the size
of the blurred areas of faces for intra-cluster similarity and
inter-cluster dissimilarity. Using a cheat sheet helps them to
map the facial features back to the seed data. However, such
methods also limit the depth of the scientific discussion, given
the design might be too easy for high school students. Group
2 and 3 paused their discussion after inputting the answers,
and limited their ability to interpret the findings further with-
out designing for authentic and systematic scientific questions
about the dataset and data analysis.

Interestingly, we identified two typical strategies of similarity
comparison, the global comparison and local comparison that
are used frequently in similarity comparison and manual clus-
tering activities. The global similarity comparison strategy
focused on comparing the overall facial expressions while the
local similarity comparison focused on comparing the individ-
ual features of the faces. Group 2 adopted the global similarity
comparison throughout, and relative to the other groups, it ap-
pears that the global comparison strategy helps the participants
to make quicker decisions, as group 2’s process of grouping
was much faster and smoother than group 4 who adopted the
local similarity comparison strategy in clustering. It confirmed
our hypothesis that participants’ social familiarity with expres-
sions helped them to focus on the global view of the face and
save time by not needing to shift attention.

Early Indicators of Scientific Discovery
The SmileyCluster enabled the groups to engage in scien-
tific inquiry, interpreting the clustering result with the seed
data, and evaluating the k-number. Participants collaboratively
worked on the tasks, took turns to elicit questions related to
understanding the in-system questions, showed uncertainty
when hesitating between answers, offered suggestions and jus-
tifications to reason about the strategies. All these behaviours
are early signs of engaging in scientific inquiry of asking ques-
tions, analyzing and interpreting data, arguing evidence and
evaluating results.

Design Considerations for Future System
First, from the recordings, we noticed most information was
provided as text, and it took users a long time to read and
understand. Therefore, we need to change the delivery of in-
formation to a more interactive and engaging approach, such



as using animation and split the tutorials to enable the learning
tasks more smoothly, while keeping information received at
the pace of the students. Second, our analysis showed partici-
pants’ limited engagement and lack of in-depth scientific dis-
cussions in pattern interpretation. This might also result from
lacking the systematic scientific inquiry design that aligns with
science curriculum, where it could elicit the contextualized
and authentic scientific inquiries assisted with data analysis,
modeling, and interpretation. In the future, we will consider
adding more game-based design components to our system
and co-design the system with school teachers for authentic
scientific inquiries in order to increase the interactivity of the
system and trigger participants’ deeper interest and engage-
ment. Lastly, we identified the need to better measure the
learning outcome. As shown in the clustering process there is
no exact measure for the clustering performance. For example,
we could embed a measurement mechanism in our system to
directly calculate the similarity, cohesion, and separation, and
offer feedback for participants of each learning activity.

LIMITATIONS AND FUTURE WORK
Our work was conducted in an informal learning context with
a prototype application, which had limited student samples
in a one-time study. Given the novelty of the study, we did
not formulate a solid rubric that aligned with any standard to
measure participants’ learning gains. Those factors limited
the scope of our study. With the next iteration, we will expand
our study design to align with the current STEM curriculum
by running a co-design workshop with K-12 school teachers.
Additionally, our current SmileyCluster system only targeted
k-means clustering analysis and we aim to integrate other
clustering analysis or other ML algorithms into our system,
and enable the system to generate a user-provided dynamic
dataset. Furthermore, the face glyph data visualization method
has the innate limitation of the total number of features it can
support. Although it is sufficient to support the learning of
basic concepts and methods of ML and support using ML to
make sense of a simple dataset, alternative data visualization
approaches are yet to be explored in order to accommodate
high-dimensionality datasets. Lastly, due to the nature of the
pre-college summer school, most participants in this study
have prior knowledge in programming and AI. Therefore,
recruiting students with less programming and AI experience
is needed in future studies.

CONCLUSION
The driving research questions of this study are two-fold: (1)
how to design learning environments that support understand-
ing the ML concepts and methods for young students with
diverse mathematical and programming skills; and (2) can ML
learning environments support scientific discovery in STEM
contexts? To address the first research question, we proposed
the face-overlay conceptual metaphor with the hypothesis that
it can reduce cognitive barriers for multi-dimension feature
space, similarity comparison, and global understanding of
data. Based on the face-overlay metaphor, we created the
programming-free SmileyCluster system to support learning
entry-level ML concepts and methods related to k-means clus-
tering. In addition, we explored the design and pedagogical

opportunities to provide exploratory and authentic learning
experiences for sense-making of patterns in the context of real-
world phenomenon, and engage students in scientific inquiry
behaviors such as question asking, explanation and argument.

Findings of this study provide rich evidence that (1) the face-
overlay metaphor can effectively support similarity compar-
ison and global understanding for high school students; (2)
the SmileyCluster system can positively support learning of
k-means clustering, which is centered around similarity com-
parison and global understanding. In addition, the participants
also carried out meaningful scientific inquiry behaviors while
interacting with the SmileyCluster system in pairs. The study
extends our knowledge of how glyph-based data visualization
and superposition-based comparative visualization can jointly
scaffold the understanding of similarity comparison and global
patterns involving multiple features within an individual data
point and multiple data points within a group, both of which
are demanding for young learners with limited mathematical
and statistical backgrounds. The face-overlay metaphor can
inform the design of future technologies that support learning
of similarity-based ML methods such as k-nearest neighbor
classification, information retrieval and anomaly detection.
Furthermore, the study deepens our understanding of how the
exploratory nature of hands-on manipulation and unsupervised
machine learning can elicit scientific inquiry learning behav-
iors. As scientific inquiry plays a critical role in cultivating
a scientific mindset for young learners, this study opens new
opportunities for integration of ML literacy with existing K-12
STEM education frameworks.

Overall, this study sheds light on making ML literacy more
accessible to young learners. This is achieved through a novel
design approach to demystify ML out of its black-box, and ini-
tial exploration of ML as a crosscutting learning component to
elicit data-driven scientific discovery and productive scientific
inquiry in STEM education.

SELECTION AND PARTICIPATION OF CHILDREN
We recruited high school students through the pre-college
summer program from the university in person. We sent the
consent form to fully inform parents and youth prior to sign-
ing up. We explicitly explained the forms to participants for
the study in person and answered their questions. The con-
sent forms for participation and video recording were signed
and obtained from youth prior to the study. All youth who
volunteered were selected to participate in our study. We fol-
lowed our approved Institutional Review Board protocol for
this research study.
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