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ABSTRACT
There is an undeniable communication barrier between deaf people
and people with normal hearing ability. Although innovations in
sign language translation technology aim to tear down this com-
munication barrier, the majority of existing sign language transla-
tion systems are either intrusive or constrained by resolution or
ambient lighting conditions. Moreover, these existing systems can
only perform single-sign ASL translation rather than sentence-level
translation, making them much less useful in daily-life communi-
cation scenarios. In this work, we fill this critical gap by present-
ing DeepASL, a transformative deep learning-based sign language
translation technology that enables ubiquitous and non-intrusive
American Sign Language (ASL) translation at both word and sen-
tence levels. DeepASL uses infrared light as its sensing mechanism
to non-intrusively capture the ASL signs. It incorporates a novel
hierarchical bidirectional deep recurrent neural network (HB-RNN)
and a probabilistic framework based on Connectionist Temporal
Classification (CTC) for word-level and sentence-level ASL transla-
tion respectively. To evaluate its performance, we have collected
7, 306 samples from 11 participants, covering 56 commonly used
ASL words and 100 ASL sentences. DeepASL achieves an average
94.5% word-level translation accuracy and an average 8.2% word
error rate on translating unseen ASL sentences. Given its promis-
ing performance, we believe DeepASL represents a significant step
towards breaking the communication barrier between deaf peo-
ple and hearing majority, and thus has the significant potential to
fundamentally change deaf people’s lives.
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1 INTRODUCTION
In the United States, there are over 28 million people considered
deaf or hearing disabled [2]. American Sign Language, or ASL in
short, is the primary language used by deaf people to communicate
with others [3]. Unfortunately, very few people with normal hear-
ing understand sign language. Although there are a few methods
for aiding a deaf person to communicate with people who do not
understand sign language, such as seeking help from a sign lan-
guage interpreter, writing on paper, or typing on a mobile phone,
each of these methods has its own key limitations in terms of cost,
availability, or convenience. As a result, there is an undeniable
communication barrier between deaf people and hearing majority.

At the heart of tearing down this communication barrier is the
sign language translation technology. Sign language is a language
like other languages but based on signs rather than spoken words. A
sign language translation system uses sensors to capture signs and
computational methods to map the captured signs to English. Over
the past few decades, although many efforts have been made, sign
language translation technology is still far from being practically
useful. Specifically, existing sign language translation systems use
motion sensors, Electromyography (EMG) sensors, RGB cameras,
Kinect sensors, or their combinations [10, 11, 28, 40, 46] to cap-
ture signs. Unfortunately, these systems are either intrusive where
sensors have to be attached to fingers and palms of users, lack of
resolutions to capture the key characteristics of signs, or signifi-
cantly constrained by ambient lighting conditions or backgrounds
in real-world settings. More importantly, existing sign language
translation systems can only translate a single sign at a time, thus
requiring users to pause between adjacent signs. These limitations
significantly slow down face-to-face conversations, making those
sign language translation systems much less useful in daily-life
communication scenarios.

In this paper, we presentDeepASL, a transformative deep learning-
based sign language translation technology that enables non-intrusive
ASL translation at both word and sentence levels. DeepASL can be
embedded inside a wearable device, a mobile phone, a tablet, a lap-
top, a desktop computer, or a cloud server to enable ubiquitous sign
language translation. As such, DeepASL acts as an always-available
virtual sign language interpreter, which allows deaf people to use
their primary language to communicate with the hearing majority
in a natural and convenient manner. As an example, Figure 1 illus-
trates an envisioned scenario where DeepASL is in the form of a
wearable device, enabling a deaf person and a hearing individual
who does not understand ASL to use their own primary languages
to communicate with each other face to face. Specifically, from
one side, DeepASL translates signs performed by the deaf person
into spoken English; from the other side, DeepASL leverages the
speech recognition technology to translate English spoken from
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(a) (b) (c)

Figure 1: Illustration of an envisioned scenario of real-time two-way communication enabled by DeepASL: (a) DeepASL translates the signs
performed by the deaf person into spoken English and broadcasts the translated ASL sentence via a speaker; (b) DeepASL captures the signs
in a non-intrusive manner; (c) DeepASL leverages the speech recognition technology to translate spoken English into texts, and projects the
texts through a pair of augmented reality (AR) glasses.

the hearing individual into text, and projects the text through a pair
of augmented reality (AR) glasses for the deaf person to read.

DeepASL uses Leap Motion [4] – an infrared light-based sensing
device that can extract the skeleton joints information of fingers,
palms and forearms – to non-intrusively capture the ASL signs
performed by a deaf person. By leveraging the extracted skeleton
joints information, DeepASL achieves word and sentence-level ASL
translation via three innovations. First, DeepASL leverages domain
knowledge of ASL to extract the key characteristics of ASL signs
buried in the raw skeleton joints data. Second, DeepASL employs
a novel hierarchical bidirectional deep recurrent neural network
(HB-RNN) to effectively model the spatial structure and tempo-
ral dynamics of the extracted ASL characteristics for word-level
ASL translation. Third, DeepASL adopts a probabilistic framework
based on Connectionist Temporal Classification (CTC) [19] for
sentence-level ASL translation. This eliminates the restriction of
pre-segmenting the whole sentence into individual words, and thus
enables translating the whole sentence end-to-end directly without
requiring users to pause between adjacent signs. Moreover, it en-
ables DeepASL to translate ASL sentences that are not included in
the training dataset, and hence eliminates the burden of collecting
all possible ASL sentences.
Summary of Experimental Results:We have conducted a rich
set of experiments to evaluate the performance of DeepASL in
three aspects: 1) ASL translation performance at both word level
and sentence level; 2) robustness of ASL translation under various
real-world settings; and 3) system performance in terms of runtime,
memory usage and energy consumption. Specifically, to evaluate
the ASL translation performance, we have collected 7, 306 samples
from 11 participants, covering 56 commonly used ASL words and
100 ASL sentences. To evaluate the robustness, we have collected
1, 178 samples under different ambient lighting conditions, body
postures when performing ASL, and scenarios with in-the-scene
interference and multi-device interference. To evaluate the system
performance, we have implemented DeepASL on three platforms
with different computing power: 1) a desktop equipped with an
Intel i7-4790 CPU and a Nvidia GTX 1080 GPU (desktop CPU and
GPU), 2) a Nvidia Jetson TX1 mobile development board equipped
with an ARM Cortex-A57 CPU and a Nvidia Tegra X1 GPU (mobile

CPU and GPU), and 3) a Microsoft Surface Pro 4 tablet equipped
with an Intel i5-6300 CPU (tablet CPU). Our results show that:
• At the word level, DeepASL achieves an average 94.5% trans-
lation accuracy. At the sentence level, DeepASL achieves an
average 8.2% word error rate on translating unseen ASL sen-
tences and an average 16.1% word error rate on translating ASL
sentences performed by unseen users.
• DeepASL achieves more than 91.8% word-level ASL translation

accuracy in various ambient lighting conditions, body postures,
and interference sources, demonstrating its great robustness in
real-world daily communication scenarios.
• DeepASL achieves 282 ms in runtime performance in the worst-
case scenario across three platforms for both word-level and
sentence translation. It also demonstrates the capability of sup-
porting enough number of inferences for daily usage on both
mobile and tablet platforms.

Summary of Contributions: The development of sign language
translation technology dates back to the beginning of 90s [44].
However, due to the limitations in both sensing technology and
computational methods, limited progress has been made over the
decades. The innovative solution provided by DeepASL effectively
addresses those limitations, and hence represents a significant con-
tribution to the advancement of sign language translation tech-
nology. Moreover, the development of DeepASL enables a wide
range of applications. As another contribution of this work, we
have designed and developed two prototype applications on top of
DeepASL to demonstrate its practical value.

According to World Health Organization (WHO), there are an
estimated 360 million people worldwide having disabling hearing
loss [6]. While the focus of this paper is on American sign language
translation, since our approach is generic at modeling signs ex-
pressed by hands, it can be leveraged for developing sign language
translation technologies for potentially any of the three hundred
sign languages in use around the world [7]. Given its promising
performance, we believe DeepASL represents a significant step
towards breaking the communication barrier between deaf peo-
ple and hearing majority, and thus has the significant potential to
fundamentally change deaf people’s lives.
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2 BACKGROUND, STATE-OF-THE-ART, AND
DESIGN CHOICE

2.1 Characteristics of ASL
ASL is a complete and complex language that mainly employs signs
made by moving the hands [23]. Each individual sign is character-
ized by three key sources of information: 1) hand shape, 2) hand
movement, and 3) relative location of two hands [23, 29]. It is the
combination of these three key characteristics that encodes the
meaning of each sign. As an example, Figure 2 illustrates how these
three characteristics altogether encode the meaning of two ASL
signs: “small” and “big”. Specifically, to sign “small”, one starts with
holding both hands in front of her with fingers closed (i.e., hand
shape), and then moves two hands towards each other (i.e., hand
movement and relative location). In comparison, to sign “big”, one
starts with extending the thumb and index fingers to form a slightly
bent ’L’ shape (i.e., hand shape), and then moves two hands away
from each other (i.e., hand movement and relative location).

Small

Big

0 0.3 0.6 0.9 1.2 1.5
Time	(s)

Figure 2: Illustration on how hand shape, hand movement, and rel-
ative location of two hands altogether encodes the meaning of two
ASL signs: “small” and “big”.

It is worthwhile to note that, for illustration purpose, we have
selected two of the most distinctive ASL signs to explain the charac-
teristics of ASL. In fact, there are many ASL signs that involve very
subtle differences in the three key characteristics mentioned above.
Moreover, in real-world scenarios, ASL signs can be expressed un-
der various conditions such as bright vs. poor lighting conditions,
walking vs. standing; and indoor vs. outdoor environments. It is the
subtle differences and the real-world factors altogether that makes
the task of ASL translation challenging.

2.2 State-of-the-Art ASL Translation Systems
Based on the sensingmodality the system uses, existing ASL transla-
tion systems can be generally grouped into four categories: 1) wear-
able sensor-based, 2) Radio Frequency (RF)-based, 3) RGB camera-
based, and 4) Kinect-based systems. However, each of them has
fundamental limitations that prevent it from being practically use-
ful for translating ASL in daily life scenarios. Specifically, wearable
sensor-based systems [8, 24–28, 36, 42, 46] use motion sensors (ac-
celerometers, gyroscopes), EMG sensors, or bend sensors to capture
the movements of hands, muscle activities, or bending of fingers to
infer the performed signs. However, wearable sensor-based systems
require attaching sensors to a user’s fingers, palms, and forearms.
This requirement makes them very intrusive and impractical for
daily usage. RF-based systems [32] use wireless signals as a sensing
mechanism to capture hand movements. Although this contactless

sensing mechanism minimizes the intrusiveness to users, wire-
less signals have very limited resolutions to “see” the hands. RGB
camera-based systems [10, 40, 47], on the other hand, are capable
of capturing rich information about hand shape and hand move-
ment without instrumenting users. However, they fail to reliably
capture those information in poor lighting conditions or generally
uncontrolled backgrounds in real-world scenarios. Moreover, the
videos/images captured may be considered invasive to the privacy
of the user and surrounding bystanders. Finally, although Kinect-
based systems overcome the lighting and privacy issues of the RGB
camera-based systems by only capturing the skeleton information
of the user body and limbs [11, 12], they do not have enough reso-
lution to capture the hand shape information, which plays a critical
role on decoding the sign language.

2.3 Design Choice
In the design of DeepASL, we use Leap Motion as our sensing
modality to capture ASL signs [4]. Leap Motion overcomes the
fundamental limitations of existing technologies and is able to
precisely capture the three key characteristics of ASL signs under
real-world scenarios in a non-intrusive manner. Specifically, Leap
Motion uses infrared light as its sensing mechanism. This not only
enables it to capture the signs in a contactless manner but also
makes it “see” the signs in poor lighting conditions. Moreover,
Leap Motion is able to extract skeleton joints of the fingers, palms
and forearms from the raw infrared images. This preserves the
privacy of the user and bystanders, and more importantly, provides
enough resolution to precisely capture hand shape as well as hand
movements and locations. As an example, Figure 3 illustrates how
the ASL signs of two words “small” and “big” are precisely captured
by the temporal sequence of skeleton joints of the fingers, palms
and forearms.
Small

Big

0 0.3 0.6 0.9 1.2 1.5 1.8
Time	(s)

Right	
Hand

Left
Hand

Figure 3: The skeleton joints of two ASL signs: “small” and “big”.

To sum up, Table 1 compares Leap Motion with other sensing
modalities used in existing sign language translation systems. As
listed, Leap Motion has shown its superiority over other sensing
modalities on capturing the three key characteristics of ASL signs in
a non-intrusive manner without the constraint of ambient lighting
condition. We leverage this superiority in the design of DeepASL.

Sensing Hand Hand Hand Intrusive Lighting
Modality Shape Movement Location Condition

Motion + EMG + Bend Captured Captured No Yes Any
RF No Captured No No Any

RGB Camera Captured Captured Captured Yes Constrained
Kinect No Captured Captured No Any

Leap Motion Captured Captured Captured No Any

Table 1: Comparison of sensing modalities for ASL translation.
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3 CHALLENGES AND OUR SOLUTIONS
Although Leap Motion has shown its superiority over other sens-
ing modalities on capturing key characteristics of ASL signs, there
is a significant gap between the raw skeleton joints data and the
translated ASL. In this section, we describe the challenges on trans-
forming the raw skeleton joints data into translated ASL at both
word and sentence levels. We also explain how DeepASL effectively
addresses those challenges.
ASL Characteristics Extraction: Leap Motion is not designed for
ASL translation. Although Leap Motion captures the skeleton joints
of the fingers, palms and forearms, the key information that char-
acterizes ASL signs (i.e., hand shape, hand movement, and relative
location of two hands) is still buried in the raw skeleton joints data.
To address this challenge, we leverage domain knowledge of ASL
to extract spatio-temporal trajectories of ASL characteristics from
the sequence of skeleton joints during signing, and develop models
upon the extracted ASL characteristics for ASL translation.
ASL Characteristics Organization: The extracted ASL character-
istics are isolated and unorganized, and thus can not be directly used
for ASL translation. This problem is exacerbated when the number
of ASL signs to be translated scales up. To address this challenge,
we propose a hierarchical model based on deep recurrent neural
network (RNN) that effectively integrates the isolated low-level
ASL characteristics into an organized high-level representation that
can be used for ASL translation.
Similarity between Different Signs: Although each ASL sign is
uniquely characterized by its ASL characteristics trajectories, many
ASL signs share very similar characteristics at the beginning of their
trajectories (see Figure 4 as an example). This similarity confuses
traditional RNN which is based on a unidirectional architecture.
This is because the unidirectional architecture can only use the
past information at each time point in the trajectory to infer the
sign being performed. To address this challenge, we propose a
bidirectional RNN model which performs inference at each point of
the trajectory based on both past and future trajectory information.
With the global view of the entire trajectory, our bidirectional RNN
model is able to achieve better ASL translation performance.

0 0.3 0.6 0.9 1.2 1.5
Time (s)

Want

What

1.8

Figure 4: Similarity between two ASL signs: “want” and “what”.

ASL Sentence Translation: To translate ASL sentences, existing
sign language translation technologies adopt a framework which re-
quires pre-segmenting individual words within the sentence. How-
ever, this framework restricts sign language translation technolo-
gies to translate one single sign at a time and thus requires users
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Figure 5: The system architecture of DeepASL.

to pause between adjacent signs when signing one sentence. To
address this challenge, we propose to adopt a framework based on
Connectionist Temporal Classification (CTC) that computes the
probability of the whole sentence directly, and therefore, removes
the requirement of pre-segmentation.

To the best of our knowledge, DeepASL is the first ASL trans-
lation framework that addresses these challenges and achieves
accurate ASL translation performance at word and sentence levels.

4 SYSTEM OVERVIEW
Figure 5 provides an overview of the multi-layer system architec-
ture of DeepASL. Specifically, at the first layer, a temporal sequence
of 3D coordinates of the skeleton joints of fingers, palms and fore-
arms is captured by the Leap Motion sensor during signing. At
the second layer, the key characteristics of ASL signs including
hand shape, hand movement and relative location of two hands are
extracted from each frame of the sequence, resulting in a number
of spatio-temporal trajectories of ASL characteristics. At the third
layer, DeepASL employs a hierarchical bidirectional deep recurrent
neural network (HB-RNN) that models the spatial structure and
temporal dynamics of the spatio-temporal trajectories of ASL char-
acteristics for word-level ASL translation. Finally, at the top layer,
DeepASL adopts a CTC-based framework that leverages the cap-
tured probabilistic dependencies between words in one complete
sentence and translates the whole sentence end-to-end without re-
quiring users to pause between adjacent signs. In the next section,
we describe the design of DeepASL in details.
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5 SYSTEM DETAILS
5.1 ASL Characteristics Extraction
The skeleton joints data provided by the LeapMotion sensor is noisy
in its raw form. As our first step, we apply a simple Savitzky-Golay
filter [37] to improve the signal to noise ratio of the raw skeleton
joints data. We select the Savitzky-Golay filter because of its effec-
tiveness in smoothing skeleton joints data [16, 48]. Specifically, let
Ji, j,t = (xi, j,t ,yi, j,t , zi, j,t ), i = {le f t , riдht}, j = {1, ...,N }, t =
{1, ...,T } denote the t-th frame of the temporal sequence of the 3D
coordinates of the skeleton joints of fingers, palms and forearms of
a single ASL sign, where x , y, z denote the 3D coordinates of the
skeleton joints, i is the hand index, j is the skeleton joint index (see
Figure 6 for the skeleton joints tracked by the Leap Motion sensor),
t is the frame index, N denotes the total number of skeleton joints
in one hand, and T denotes the total number of frames included in
the temporal sequence. The Savitzky-Golay filter is designed as

J̃i, j,t = (−3Ji, j,t−2 + 12Ji, j,t−1 + 17Ji, j,t + 12Ji, j,t+1 − 3Ji, j,t+2)/35
(1)

where J̃i, j,t denotes the smoothed 3D coordinates of the skeleton
joints in the t-th frame.

(b)

Elbow

Skeleton Joint
Bone
Extended Bone

(a)

80 cm

Figure 6: The skeleton joints tracked by the Leap Motion sensor.

Based on the smoothed temporal sequence of the skeleton joints
data, we extract the key characteristics of ASL signs including hand
shape, handmovement and relative location of two hands from each
frame of the sequence. Specifically, since hand shape is independent
of the absolute spatial location of the hand and is characterized by
the relative distances among skeleton joints of palm and fingers, we
extract hand shape information of both left and right hands by zero-
centering the palm center of the right hand and then normalizing
the 3D coordinates of the skeleton joints to it as

Si, j,t = J̃i, j,t − J̃i, j=r iдht_palm_center,t . (2)

By doing this, the information of the relative location of the left
hand to the right hand is also encoded in Si=lef t, j,t . Lastly, we
extract hand movement information of both left and right hands
as the spatial displacement of each skeleton joint between two
consecutive frames defined as

Mi, j,t =

{
(0, 0, 0), if t = 1
J̃i, j,t − J̃i, j,t−1, if t = 2, ...,T .

(3)

Taken together, the ASL characteristics extracted from each
frame of the temporal sequence of 3D coordinates of the skeleton
joints result in four spatio-temporal ASL characteristics trajectories
that capture information related to: 1) right hand shape, 2) right
hand movement, 3) left hand shape (it also encodes the information
of the relative location of the left hand to the right hand), and 4) left

hand movement, respectively. We denote them as Sr iдht ,Mr iдht ,
Slef t , andMlef t accordingly.

5.2 Word-Level ASL Translation
In this section, we first provide the background knowledge of bidi-
rectional recurrent neural network (B-RNN) and Long Short-Term
Memory (LSTM) tomake the paper self-contained.We then describe
our proposed hierarchical bidirectional deep recurrent neural net-
work (HB-RNN) which is designed upon B-RNN and LSTM for
single-sign word-level ASL translation. Finally, we describe the
architectures of four comparative models that we use to validate
the design choice of our proposed model.

5.2.1 A Primer on Bidirectional RNN and LSTM.
RNN is a powerful model for sequential data modeling [18]. It has
been widely used and has shown great success in many impor-
tant tasks such as speech recognition [20], natural language pro-
cessing [39], language translation [41], and video recognition [15].
Specifically, given an input temporal sequence x = (x1,x2, ...,xT ),
where in our case xt is the t-th frame of the spatio-temporal ASL
characteristics trajectories, the hidden states of a recurrent layer
h = (h1,h2, ...,hT ) and the output y = (y1,y2, ...,yT ) of a RNN can
be obtained as:

ht = θh (Wxhxt +Whhht−1 + bh ) (4)

yt = θy (Whoht + bo ) (5)

whereWxh ,Whh , andWho are connection weight matrices, bh and
bo are bias values, and θh and θy are activation functions.

The RNNmodel described above only contains a single recurrent
hidden layer and is unidirectional. One limitation of the unidirec-
tional RNN is that it could only look backward and thus can only
access the past information at each time point in the temporal se-
quence for inference. In the context of sign language translation,
this limitation could cause translation errors when different signs
share very similar characteristics at the beginning of the signs. To
address this limitation, we propose to use bidirectional RNN (B-
RNN) [38] as the building block in our design. Figure 7 illustrates
the network architecture of a B-RNN. As shown, B-RNN has two
separate recurrent hidden layers, with one pointing backward (i.e.,
backward layer) and the other pointing forward (i.e., forward layer).
As such, a B-RNN can look both backward and forward, and can
thus utilize both the past and future information at each time point
in the temporal sequence to infer the sign being performed.

The recurrent structure of RNN enables it to learn complex tem-
poral dynamics in the temporal sequence. However, it can be diffi-
cult to train a RNN to learn long-term dynamics due to the vanishing
and exploding gradients problem [21]. To solve this problem, Long
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𝑦t+1

ℎt+1

ℎt+1
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ℎt Forward Recurrent Units

Backward Recurrent Unitsℎt

Figure 7: The network architecture of bidirectional RNN (B-RNN).
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Figure 8: The architecture of the hierarchical bidirectional deep re-
current neural network (HB-RNN) for word-level ASL translation.
For ASL signs that are performed using only one hand, only the cor-
responding half of the HB-RNN model is activated.

Short-Term Memory (LSTM) [22] was invented which enables the
network to learn when to forget previous hidden states and when
to update hidden states given new input. This mechanism makes
LSTM very efficient at capturing the long-term dynamics. Given
this advantage, we use B-RNNwith LSTM architecture in our design
to capture the complex temporal dynamics during signing.

5.2.2 Hierarchical Bidirectional RNN for Single-Sign Modeling.
Although four spatio-temporal ASL characteristics trajectories have
been extracted from the raw skeleton joints data, they are isolated
and at low level, and thus can not be directly used for word-level
ASL translation. Therefore, we propose a hierarchical model based
on bidirectional deep recurrent neural network with the LSTM
architecture (HB-RNN) to integrate the isolated low-level ASL char-
acteristics into an organized high-level representation that can be
used for word-level ASL translation.

Figure 8 illustrates the architecture of the proposed HB-RNN
model. At a high level, our HB-RNN model takes the four spatio-
temporal ASL characteristics trajectories as its input, extracts the
spatial structure and the temporal dynamics within the trajecto-
ries, and combines them in a hierarchical manner to generate an
integrated high-level representation of a single ASL sign for word-
level ASL translation. As shown, our HB-RNN model consists of
seven layers including three B-RNN layers (bl1,2,3), two fusion lay-
ers (f l1,2), one fully connected layer (f c), and one softmax layer
(sm). Each of these layers has different structure and thus plays
different role in the whole model. Specifically, in the bl1 layer, the
four spatio-temporal ASL characteristics trajectories that capture
information related to the right hand shape (Sr iдht ), right hand
movement (Mr iдht ), left hand shape (Slef t ), and left hand move-
ment (Mlef t ) are fed into four separate B-RNNs. These B-RNNs
capture the spatial structure among skeleton joints and transform
the low-level ASL characteristics into new representations of right
hand shape, right hand movement, left hand shape, and left hand
movement in both forward layer

−→
h and backward layer

←−
h . In the

fusion layer f l1, we concatenate the newly generated represen-
tations of right (left) hand shape and right (left) hand movement

together as Ri,tbl1 = {
−→
h t
bl1
(Sti ),
←−
h t
bl1
(Sti ),
−→
h t
bl1
(Mt

i ),
←−
h t
bl1
(Mt

i )}, i =

{riдht , le f t}, and feed the two concatenations into two B-RNNs in
the bl2 layer separately to obtain an integrated representation of
the right (left) hand. Similarly, the two newly generated right and
left hand representations are further concatenated together in the
fusion layer f l2 denoted as Rtbl2 . This concatenation is then fed into
the B-RNN in the bl3 layer to obtain a high-level representation in
both forward layer and backward layer (denoted as

−→
h t
bl3
(Rtbl2
) and

←−
h t
bl3
(Rtbl2
)) that integrates all the ASL characteristics of a single

sign. Finally, we connect
−→
h t
bl3
(Rtbl2
) and

←−
h t
bl3
(Rtbl2
) to the fully

connected layer f c . The output of f c is summed up across all the
frames in the temporal sequence and then normalized by the soft-
max function in the softmax layer sm to calculate the predicted
word class probability given a sequence J :

O =
T∑
t=1

Ot
f c (6)

p(Ck |J ) =
eOk∑C
n=1 e

On
,k = 1, ...,C (7)

where C denotes the total number of ASL words in the dictionary.
By accumulating results and normalizing across all the frames, our
model is able to make inference based on the information of the
entire sequence. More importantly, it allows our model to handle
ASL signs that have different sequence lengths as well as sequence
length variation caused by signing speed.

5.2.3 Comparative Models.
To validate the design choice of our proposed HB-RNN model, we
construct four comparative models as follows:
• HB-RNN-M: a hierarchical bidirectional RNNmodel with hand

movement information only. We compare this model with HB-
RNN to prove the importance of the hand shape information.
• HB-RNN-S: a hierarchical bidirectional RNN model with hand

shape information only. We compare this model with HB-RNN
to prove the importance of the hand movement information.
• SB-RNN: a simple bidirectional RNN model without hierarchi-
cal structure. We compare this model with HB-RNN to prove
the importance of the hierarchical structure.
• H-RNN: a hierarchical unidirectional RNNmodel with forward
recurrent layer only. We compare this model with HB-RNN to
prove the significance of the bidirectional connection.
The parameters of the proposed HB-RNN model as well as the

four comparative models are listed in Table 2.

5.3 Sentence-Level ASL Translation
In daily-life communication, a deaf person does not sign a single
word but a complete sentence at a time. Although the HB-RNN
model described in the previous section is capable of transforming
the low-level ASL characteristics into a high-level representation for
word-level translation, when translating a complete ASL sentence,
HB-RNN still requires pre-segmenting the whole sentence into
individual words and then connecting every translated word into a
sentence in the post-processing. This is not only complicated but
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Category Model RNN Layer 1 RNN Layer 2 RNN Layer 3

One-Hand
ASL
Words

HB-RNN-M 2 × 1 × 128 - -
HB-RNN-S 2 × 1 × 128 - -
SB-RNN 2 × 1 × 128 - -
H-RNN 1 × 2 × 64 1 × 1 × 128 -
HB-RNN 2 × 2 × 32 2 × 1 × 64 -

Two-Hand
ASL
Words

HB-RNN-M 2 × 2 × 64 2 × 1 × 128 -
HB-RNN-S 2 × 2 × 64 2 × 1 × 128 -
SB-RNN 2 × 1 × 256 - -
H-RNN 1 × 4 × 64 1 × 2 × 64 1 × 1 × 128
HB-RNN 2 × 4 × 32 2 × 2 × 32 2 × 1 × 64

Table 2: The parameters of our proposed HB-RNN model and the
four comparative models. The parameters follow the format of 1
(unidirectional) or 2 (bidirectional) × #RNNs × #hidden units.

also requires users to pause between adjacent signs when signing
one sentence, which is not practical in daily-life communication.

To address this problem, we propose a probabilistic approach
based on Connectionist Temporal Classification (CTC) [19] for
sentence-level ASL translation. CTC is the key technique that drives
the modern automatic speech recognition systems such as Apple
Siri and Amazon Alexa [31]. It eliminates the necessity of word
pre-segmentation and post-processing, allowing end-to-end trans-
lation of a whole sentence. Inspired by its success on sentence-level
speech recognition, we propose a CTC-based approach that can
be easily built on top of the HB-RNN model described in the pre-
vious section for sentence-level ASL translation. Specifically, to
realize sentence-level ASL translation based on CTC, we make the
following modifications on HB-RNN:
• Let V denote the ASL word vocabulary. We add a blank symbol
{blank} into the ASL word vocabulary: V ′ = V ∪ {blank}.
Essentially, this blank symbol enables us to model the transition
from one word to another within a single sentence.
• We increase the capacity of the RNN layers (i.e., bl1, bl2 and bl3)

in HB-RNN to 2× 4× 32, 2× 2× 64, and 2× 1× 128, respectively
(see Table 2 for the format definition). This is because ASL
sentences are more complex than ASL words and thus require
more parameters for modeling.
• Since an ASL sentence consists of multiple signs, we replace
the softmax layer in HB-RNN which computes the probability
of a single sign with a new softmax layer which computes the
probabilities of a sequence of multiple signs.
• Based on the modified softmax layer, the probabilities of all the
possible sentences formed by the word included in V can be
computed. Given those probabilities, we compute the proba-
bility of a target label sequence by marginalizing over all the
sequences that are defined as equivalent to this sequence. For
example, the label sequence ′SL′ is defined as equivalent to the
label sequences ′SSL′, ′SLL′, ′S L′ or ′SL ′, where ′ ′ denotes
the blank symbol {blank}. This process not only eliminates the
need for word pre-segmentation and post-processing but also
addresses variable-length sequences.
• Finally, we delete adjacent duplicate labels and remove all the

blank symbols in the inferred label sequence to derive the trans-
lated sentence.
With all the above modifications, the end-to-end sentence-level

ASL translation is achieved.

6 EVALUATION
6.1 Experimental Setup

6.1.1 Dataset Design.
To evaluate the translation performance of DeepASL at both word
and sentence levels as well as its robustness under real-world set-
tings, we have designed and collected three datasets: 1) ASL Words
Dataset; 2) ASL Sentences Dataset; and 3) In-the-Field Dataset.
ASL Words Dataset: Since it is impossible to collect all the words
in the ASL vocabulary, we target ASL words that are representative
of each category of the ASL vocabulary. In particular, we have
selected 56 ASL words from five word categories: pronoun, noun,
verb, adjective and adverb. Table 3 lists the selected 56 ASL words.
These words are among the top 200 most commonly used words in
ASL vocabulary. Among these 56 words, 29 are performed by two
hands and the rest 27 are performed by one hand (right hand).

Category Words
pronoun who, I, you, what, we, my, your, other
noun time, food, drink, mother, clothes, box, car, bicycle,

book, shoes, year, boy, church, family
verb want, dontwant, like, help, finish, need, thankyou,

meet, live, can, come
adjective big, small, hot, cold, blue, red, gray, black, green,

white, old, with, without, nice, bad, sad, many,
sorry, few

adverb where, more, please, but

Table 3: The ASL Words Dataset (two-hand words are underlined).

ASL Sentences Dataset: We have followed the dataset design
methodology used in Google’s LipNet (i.e., sentence-level lipread-
ing) [9] to design our ASL Sentences Dataset. Specifically, we de-
sign the ASL sentences by following a simple sentence template:
subject (4) + predicate(4) + attributive(4) + object (4), where the su-
perscript denotes the number of word choices for each of the four
word categories, which are designed to be {I ,you,mother ,who},
{dontwant , like,want ,need}, {biд, small , cold,more} and {time,
f ood,drink, clothes}, respectively. Based on this sentence template,
a total of 256 possible sentences can be generated. Out of these 256
sentences, we hand picked 100 meaningful sentences that people
would use in daily communication. Example meaningful sentences
are "I need more food" and "Who want cold drink".
In-the-Field Dataset: In daily life, deaf people may need to use
ASL to communicate with others under various real-world settings.
We consider three common real-world factors that can potentially
affect the ASL translation performance: 1) lighting conditions, 2)
body postures; and 3) interference sources. For lighting conditions,
we collected data from both indoor poor lighting scenario and out-
door bright sunlight scenario. For body postures, we collected data
when signs are performed while the signer stands or walks. For in-
terference sources, we considered two interference sources: people
and device. In terms of people interference, data was collected while
another person stands in front of Leap Motion with both of her
hands appearing in the viewing angle of the Leap Motion sensor.
This setup simulates the communication scenario between a deaf
person and a normal hearing person. In terms of device interference,
data was collected while another person is wearing Leap Motion
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standing near the user. This setup simulates the communication
scenario where there are more than one person using DeepASL.

6.1.2 Participants.
Our study is approved by IRB. Due to the IRB constraint, we could
only recruit people with normal hearing ability to participate in the
study. We recruited 11 participants and hosted an 3-hour tutorial
session to teach them how to perform the target ASL signs using
online ASL tutorial videos. The 11 participants (four female) are
between 20 to 33 (µ = 24.2) years old, weighted between 49 kg to 86
kg (µ = 74 kg) and are between 155 cm to 185 cm tall (µ = 173 cm).

6.1.3 Summary of Datasets.
Table 4 summarizes the amount of data collected in the three
datasets. Specifically, for ASL Words Dataset, we collected 56 ASL
words with 10 (±3) samples of each word from each of the 11 partic-
ipants. In total, 3, 068 and 3, 372 samples of one-hand and two-hand
ASL words were collected, respectively. For ASL Sentences Dataset,
we randomly collected 80 (±3) out of the 100 meaningful sentences
from each of the 11 participants. In total, 866 sentences were col-
lected. For In-the-Field Dataset, for each of the six scenarios, we
randomly selected 25 out of the 56 ASL words and collected 3 (±1)
samples of each word from three out of the 11 participants. To
the best of our knowledge, our datasets are the largest and the
most comprehensive datasets in the sign language translation liter-
ature [10, 14, 26, 32, 43, 47].

Category ASL Words ASL
Sentences

In-the-
Field TotalSubcategory One-hand Two-hand

Duration (s) 7541.7 8616.3 5094.3 2498.4 23750.7
Frames 821846 949310 507001 259431 2537588
Samples 3068 3372 866 1178 8484

Table 4: Summary of datasets

6.1.4 Evaluation Metrics and Protocol.
EvaluationMetrics:We use different metrics to evaluate the trans-
lation performance of DeepASL at the word and sentence levels.
Specifically, at the word level, we use word translation accuracy,
confusion matrix, and Top-K accuracy as evaluation metrics. At the
sentence level, we use word error rate (WER) as the evaluation met-
ric, which is defined as the minimum number of word insertions,
substitutions, and deletions required to transform the prediction
into the ground truth, divided by the number of words in the ground
truth.WER is also the standard metric for evaluating sentence-level
translation performance of speech recognition systems.
Evaluation Protocol: At both word and sentence levels, we use
leave-one-subject-out cross-validation as the protocol to examine
the generalization capability of DeepASL across different subjects.
In addition, to evaluate the performance of DeepASL in translating
unseen sentences, we randomly divide ASL sentences into ten folds,
making sure that each fold contains unique sentences to the rest
nine folds. We then use ten-fold cross-validation as the protocol.

6.2 Word-Level Translation Performance
Figure 11 shows the average word-level ASL translation accuracy
across 11 participants. Overall, DeepASL achieves an average accu-
racy of 94.5% on translating 56 ASL words across 11 participants.
This is a very impressive result considering it is achieved based
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Figure 9: Confusion matrix of 27 one-hand ASL words.
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Figure 10: Confusion matrix of 29 two-hand ASL words.

on leave-one-subject-out cross validation protocol. Further, we ob-
serve that the margin between the highest (participant#1, 98.4%)
and the lowest (participant#11, 90.6%) accuracies is small. This in-
dicates that our HB-RNN model is capable of capturing the key
characteristics of ASL words. Furthermore, the standard deviation
of these accuracies is as low as 2.4%, which also demonstrates the
generalization capability of our model across different users.

To provide a more detailed view of the result, Figure 9 and 10
show the confusion matrices of translating 27 one-hand ASL words
and 29 two-hand ASL words, respectively. As shown in Figure 9,
among all the 27 one-handASLwords, only please (word#20) achieves
100% in both precision and recall. This is because please has very
distinctive hand shape and hand movement characteristics. In con-
trast, hot (word#9) achieves the lowest precision of 81.1% and bad
(word#21) achieves the lowest recall of 86.3%. Similarly, as shown
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Figure 11: Word-level ASL translation accu-
racy across 11 participants.
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Figure 12: Top-10 WER in translating ASL
sentences of unseen participants.
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Figure 13: Top-10 WER in translating un-
seen sentences.

in Figure 10, among all the 29 two-hand ASL words, big (word#7)
achieves 100% in precision and bicycle (word#19) achieves 100% in
recall, whereas with (word#15) has the lowest precision of 90.7%
and but (word#29) has the lowest recall of 84.3%.

6.3 The Necessity of Model Components
To validate the design choice of our proposed HB-RNN model, we
compare the translation performance between HB-RNN and four
comparative models introduced in section 5.2.3. To make a fair com-
parison, we set the number of hidden units of each model such that
the total number of parameters of each model is roughly the same.
We use the ASL Words Dataset to evaluate these models. Table 5
lists the evaluation results in terms of average Top-K (K = 1, 2, 3)
accuracies and standard deviations across 11 participants. As listed,
our proposed HB-RNN model outperforms all four comparative
models across all three Top-K metrics. Specifically, our HB-RNN
model achieves an 5.1%, 5.0%, 3.4% and 0.8% increase in average
Top-1 accuracy over the four comparative models, respectively.
This result demonstrates the superiority of our HB-RNN model
over the four comparative models. It also indicates that the hand
shape information, hand movement information, the hierarchical
structure, as well as the bidirectional connection capture important
and complimentary information about the the ASL signs. By com-
bining these important and complimentary information, the best
word-level translation performance is achieved.

Model Top-1 (%) Top-2 (%) Top-3 (%) Note
HB-RNN-M 89.4 ± 3.1 95.4 ± 1.8 97.2 ± 1.2 No hand shape
HB-RNN-S 89.5 ± 2.4 94.9 ± 1.7 97.0 ± 1.3 No hand movement
SB-RNN 91.1 ± 3.4 96.5 ± 1.7 98.2 ± 1.2 No hierarchical structure
H-RNN 93.7 ± 1.7 97.1 ± 0.9 98.1 ± 0.6 No bidirectional connection
HB-RNN 94.5 ± 2.4 97.8± 1.3 98.7 ± 0.9 Our model

Table 5: Comparison of word-level ASL translation performance be-
tween HB-RNN and four comparative models.

6.4 Sentence-Level Translation Performance
6.4.1 Performance on Unseen Participants.

We first evaluate the performance of DeepASL on translating ASL
sentences using leave-one-subject-out cross-validation protocol.
Figure 12 shows the results in Top-10WER. Specifically, the Top-1
WER is 16.1 ± 3.7%. It indicates that for a 4-word sentence, there
is only an average 0.64 words that needs either substitution, dele-
tion or insertion. This is a very promising results considering: 1)
there are 16 candidate classes (16 ASL words that construct these

sentences) in each frame of the sequence; 2) we do not restrict the
length or the word order of the sentence during inference and thus
there is an enormous amount of possible label sequences; and 3) no
language model is leveraged to help improve the performance.

6.4.2 Performance on Unseen Sentences.
We further conduct an experiment to evaluate the performance
of DeepASL on translating unseen sentences (i.e., sentences not
included in the training set). The results are illustrated in Figure 13.
Specifically, the Top-1WER is 8.2 ± 5.4%. This indicates that there is
only an average 0.33 out of 4 words that needs substitution, deletion
and insertion. This is a very promising result considering that the
translated sentences are not included in the training set. As a result,
it eliminates the burden of collecting all possible ASL sentences.

6.5 Robustness of ASL Translation in the Field
Table 6 lists the word-level ASL translation performance achieved
on the In-the-Field Dataset.
Impact of Lighting Conditions: Under poor lighting condition,
DeepASL achieves 96.8 ± 3.1% accuracy. It indicates that the poor
lighting condition has very limited impact on the performance of
DeepASL. Under outdoor sunlight condition, DeepASL achieves 91.8
± 4.1% accuracy. This result indicates that the significant portion
of infrared light in the sunlight also has very limited impact on the
performance of DeepASL.
Impact of Body Postures: DeepASL achieves 92.2 ± 3.0% and 94.9
± 4.5% onwalking and standing postures, respectively. The accuracy
only drops slightly comparing to previous ASL word recognition
result, indicating that DeepASL could also capture information with
either standing or sitting body posture. Moreover, this result also
demonstrates the advantage of Leap Motion over inertial sensors
which are very susceptible to human body motion artifacts.
Impact of Interference Sources: DeepASL achieves 94.7 ± 3.0%
and 94.1 ± 1.3% on people in-the-scene interference and multi-
device interference, respectively. In the first scenario, the accuracy is
comparable to previous ASL word recognition result, meaning that
DeepASL is robust to this two interference scenarios. We observe
that spaced with social distance, Leap Motion is rarely confounded
by the hands of an interferer. This is because the cameras of Leap
Motion both have fish-eye angle view, making the far objects too
small to be detected. As a matter of fact, effective range of Leap
Motion is designed to be no more than approximately 80 cm [5],
much less than the social distance. On the other hand, our system
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is not affected by multiple Leap Motion present in the ambient
environment, indicating that DeepASL is robust when multiple
devices are being used at the same time. This is because LeapMotion
only uses infrared to illuminate the space where ASL is performed
and hence the illumination does not have impact on the infrared
images captured by the sensor.

Category Lighting Body Interference
Condition Posture Source

Subcategory Poor Bright Walk Stand People Device
Accuracy (%) 96.8 ± 3.1 91.8 ± 4.3 92.2 ± 3.0 94.9 ± 4.5 94.7 ± 3.4 94.1 ± 1.3

Table 6: In-the-field ASL translation performance.

6.6 System Performance
To examine the system performance, we have implemented Deep-
ASL on three platforms with five computing units: 1) desktop CPU
and GPU, 2) mobile CPU and GPU, and 3) tablet CPU. Our goal is to
profile the system performance of DeepASL across platforms with
different computing powers. Specifically, we use a desktop installed
with an Intel i7-4790 CPU and a Nvidia GTX 1080 GPU to simulate
a cloud server; we use a mobile development board that contains
an ARM Cortex-A57 CPU and a Nvidia Tegra X1 GPU to simulate
augmented reality devices with built-in mobile CPU/GPU1; and we
use Microsoft Surface Pro 4 tablet and run DeepASL on its Intel
i5-6300 CPU. The specs of the computing units are listed in Table7.

To provide a comprehensive evaluation, we evaluate the system
performance of three models: 1) one-hand ASL word translation
model; 2) two-hand ASL word translation model; and 3) ASL sen-
tence translation model. In the following, we report their system
performance in terms of runtime performance, runtime memory
performance, and energy consumption.

Platform CPU RAM GPU
Cores Speed Cores GFLOPS Speed

Desktop 8 3.6GHz 16GB 2560 8228 1.67GHz
Mobile 4 1.9GHz 4GB 256 512 1GHz
Tablet 2 2.4GHz 4GB - - -

Table 7: The specs of the three hardware platforms.

6.6.1 Runtime Performance.
An inference contains two parts: data fetching/preprocessing and
forward feeding of deep network. Because the time consumed by
data fetching/preprocessing is negligible comparing to forward feed-
ing, we report only total inference time.We run 200ASLword/sentence
recognition and report the average runtime performance. The re-
sults of runtime performance of three models on five computing
units of three platforms are shown in Figure 14. To give a straight-
forward view, we order the time cost in an ascending order. At
a high level, inference takes much longer when running on the
CPUs than on the GPUs across three models. In detail, PC-CPU is
8× to 9× faster than PC-GPU; TX1-CPU is 14× to 28× faster than
TX1-GPU. There are two reasons: (1) during inference, only one
sample is passing through the network, which substantially limits
the component eligible for parallel computation; and (2) our models

1Since Mircrosoft Hololens currently does not support hosting USB clients, we could
not implement DeepASL in Mircrosoft Hololens to test its system performance.

are built on RNN, meaning that its time-dependency nature intrin-
sically eliminate the possibility of parallelism. Therefore, we argue
that during inference CPUs are better choice than GPUs. As such,
DeepASL does not need high-end GPU to do inference. It is also
worth pointing out that the runtime of ASL sentence recognition
is longer than word recognition. This is because HB-RNN-CTC
for sentence recognition has about twice as many parameters as
HB-RNN for word recognition. Equally important, we observe that
the time cost on all three CPUs are less than 282 ms (ASL sentence
recognition on TX1-CPU) which means DeepASL achieves real-time
recognition performance.
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Figure 14: Runtime performance of the three models.

6.6.2 Runtime Memory Usage.
Next we report the memory cost on various platforms in CPU and
GPU mode. Again, we briefly report the average memory usage
on three models. Because memory allocation highly depends on
operating system and it is difficult to unravel the memory usage for
each part, we only report the total memory usage of each model. For
all three platforms, we report physical RAMusage andGPUmemory
usage. We report these usages because they reflect the memory
cost of each model and might indicate the potential improvements.
To clearly reflect the influence of three models on CPU, we report
the RAM usage that is subtracted by the RAM usage before doing
inference. The total RAM usage without loading our model is 2891
MB on desktop, 931 MB on TX1 and 1248 MB on Surface. Figure 15
shows the memory cost on five computing units of three platforms.
We observe that memory cost of ASL sentence inference is larger
than two hand ASL word inference, which is larger than one hand
ASL word. The reason is that in the ASL sentence model, there are
more hidden units, thus demanding more allocated memory.
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Figure 15: Runtime memory usage of the three models.
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6.6.3 Energy Consumption.
To evaluate the power consumption of DeepASL, we use PWRcheck
DC power analyzer [1] to measure the power consumption of both
TX1 and Surface tablet. We run 200 ASL word/sentence recognition
and report the average power consumption. Table 8 lists the average
power consumption of TX1 and Surface respectively. We report the
power consumption of TX1 to simulate augmented reality devices
because the TX1 is designed for mobile device real-time artificial
intelligence performance evaluation and thus reflects the portion of
power consumed by inference in augmented reality devices. We ob-
serve that for TX1 the power consumption of performing inference
on GPU is much larger than CPU. This is because: (1) due to the
RNN structure of our model, limited amount of computation can
be parallelled, making GPU is less efficient in inference than CPU;
and (2) performing inference on GPU also involves processing on
CPU (for data loading etc.) and thus costs almost twice as much
power as CPU alone.

Platform Task Power Time Energy
(W) (ms) (mJ)

TX1

Idle 3.54 - -
One-hand ASL word (CPU) 5.92 42.9 254.0
Two-hand ASL word (CPU) 6.13 66.1 417.5

ASL sentence (CPU) 6.02 281.7 1695.8
One-hand ASL word (GPU) 12.31 746.2 9185.7
Two-hand ASL word (GPU) 12.16 1943.4 23631.7

ASL sentence (GPU) 11.75 4153.6 48804.8

Surface

Sleep 1.63 - -
Screen-on 8.32 - -

ASL Dictionary App-on 15.75 - -
One-hand ASL word 23.67 26.1 591.7
Two-hand ASL word 24.21 52.7 1117.8

ASL sentence 22.13 156.2 3456.7

Table 8: Energy consumption on TX1 and Surface.

Finally, in Table 9, we report the estimated number of ASL
word/sentence recognition that can be completed by TX1 and Sur-
face, using fully-charged battery of Hololens (16.5 Wh) and Surface
(38.2 Wh), respectively. For TX1, the number of inferences of CPU
is 36×, 57× and 29× larger than those of its GPU for three model
respetively. It means that in terms of performing inference, CPU is
more suitable. Meanwhile, despite the power consumption from
other sources, a Hololens/Surface equal volume battery could sup-
port enough number of inferences within one day.

Platform Task CPU GPU

TX1
One-hand ASL word 233888 6467
Two-hand ASL word 142291 2514

ASL sentence 35028 1217

Surface
One-hand ASL word 232420 -
Two-hand ASL word 123031 -

ASL sentence 39784 -

Table 9: Estimated number of inferences on TX1 and Surface with a
16.5 Wh (Hololens) and 38.2 Wh (Surface) battery, respectively.

7 APPLICATIONS
The design of DeepASL enables a wide range of applications. To
demonstrate the practical value of DeepASL, we have developed
two prototype applications based on DeepASL. In this section, we
briefly describe these two prototype applications.

7.1 Application#1: Personal Interpreter
Use Scenario: For the first application, DeepASL is used as a Per-
sonal Interpreter. With the help of an AR headset, Personal Interpreter
enables real-time two-way communications between a deaf person
and peole who do not understand ASL. Specifically, on one hand,
Personal Interpreter uses speech recognition technology to translate
spoken languages into digital texts, and then projects the digital
texts to the AR screen for the deaf person to see; on the other hand,
Personal Interpreter uses ASL recognition technology to translate
ASL performed by the deaf person into spoken languages for peole
who do not understand ASL.
Implementation: We implemented Personal Interpreter as a Mi-
crosoft Hololens application. Since Mircrosoft Hololens currently
does not support hosting USB clients, we could not implement
DeepASL in Mircrosoft Hololens. Instead, we transmitted the ASL
recognition results to Hololens via TCP/IP. Figure 16 illustrates the
usage scenario and a screenshot from AR perspective. As shown,
the recognized ASL sentence is displayed in the green dialogue box
in the Hololens application. The tablet-AR set is burdensome to the
deaf people, but we envision that in the future, the AR headset will
be miniaturized and hence is much less burdensome for people to
wear on a daily basis. Meanwhile, the future AR headset will be
able to host a USB device, enabling direct data transmission from
Leap Motion to itself.

(a) (b)

Deaf 
Person 

(A)

Normal Hearing 
Person (B)

B: Speech 
Recognition 

A: ASL Sentence 
Translation

ASL
Deaf-Normal 
Conversion 

AR App

AR 
Headset

Figure 16: The Personal Interpreter application: (a) a deaf person per-
forming ASL while wearing a Microsoft Hololens AR headset; (b) a
screenshot from AR perspective.

7.2 Application#2: ASL Dictionary
Use Scenario: For the second application, DeepASL is used as an
ASL Dictionary to help a deaf person look up unknown ASL words.
Spoken languages (e.g., English) allow one to easily look up an
unknown word via indexing. Unfortunately, this is not the case
for ASL. Imagine a deaf child who wants to look up an ASL word
that she remembers how to perform but forgets the meaning of it.
Without the help of a person who understands ASL, there is not an
easy way for her to look up the ASL word. This is because unlike
spoken languages, ASL does not have a natural form to properly
index each gesture. ASL Dictionary solves this problem by taking
the sign of the ASL word as input and displays the meaning of this
ASL word in real time.
Implementation:We implemented ASL Dictionary as a Microsoft
Surface tablet application. Figure 17 illustrates the usage scenario
and a screenshot of the tablet application.
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(a) (b)

Looked-up Word 
& Explanation

ASL 
Visualization

Figure 17: TheASL Dictionary application: (a) a deaf person looking
up an ASL word “help”; (b) a screenshot of the tablet application.

8 DISCUSSION
Impact on ASL Translation Technology: DeepASL represents
the first ASL translation technology that enables ubiquitous and
non-intrusive ASL translation at both word and sentence levels. It
demonstrates the superiority of using infrared light and skeleton
joints information over other sensing modalities for capturing key
characteristics of ASL signs. It also demonstrates the capability
of hierarchical bidirectional deep recurrent neural network for
single-sign modeling as well as CTC for translating the whole
sentence end-to-end without requiring users to pause between
adjacent signs. Given the innovation solution it provides and its
promising performance, we believe DeepASL has made a significant
contribution to the advancement of ASL translation technology.
Initiative on ASL Sign Data Crowdsourcing: Despite months
of efforts spent on data collection, our dataset still covers a small
portion of the ASL vocabulary. To make DeepASL being able to
translate as many words as in the ASL vocabulary and many more
sentences that deaf people use in their daily-life communications,
we have taken an initiative on ASL sign data crowdsourcing. We
have made our data collection toolkit publicly available. We hope
our initiative could serve as a seed to draw attentions from peo-
ple who share the same vision as we have, and want to turn this
vision into reality. We deeply believe that, with the crowdsourced
efforts, ASL translation technology can be significantly advanced.
With that, we could ultimately turn the vision of tearing down the
communication barrier between the deaf people and the hearing
majority into reality.

9 RELATEDWORK
Our work is related to two research areas: 1) sign language transla-
tion; and more broadly 2) mobile sensing systems.
Sign Language Translation Systems: Over the past few decades,
a variety of sign language translation systems based on various
sensing modalities have been developed. Among them, systems
based on wearable sensors have been extensively studied [8, 24–
28, 36, 42, 46]. These systems use motion sensors, EMG sensors,
bend sensors, or their combinations to capture hand movements,
muscle activities, or bending of fingers to infer the performed signs.
For example, Wu et al. developed a wrist-worn device with onboard
motion and EMG sensors which is able to recognize 40 signs [46].
Another widely used sensing modality in sign language translation
systems is RGB camera [10, 40, 47]. For example, Starner et al. are
able to recognize 40 ASL words using Hidden Markov Model with
a hat-mounted RGB camera [40]. There are also some efforts on
designing sign language translation systems based on Microsoft
Kinect [11, 12]. As an example, by capturing the skeleton joints
of the user body and limbs using Microsoft Kinect, Chai et al. are

able to recognize Chinese Sign Language by matching the collected
skeleton trajectory with gallery trajectories [12]. Most recently,
researchers have started exploring using Leap Motion to build sign
language translation systems [13, 30]. However, these systems are
very limited in their capabilities in the sense that they can only
recognize static ASL signs by capturing hand shape information.
In contrast, DeepASL captures both hand shape and movement
information so that it is able to recognize dynamic signs that involve
movements. Most importantly, compared to all the existing sign
language translation systems, DeepASL is the first framework that
enables end-to-end ASL sentence translation.
Mobile Sensing Systems: Our work is also broadly related to re-
search in mobile sensing systems. Prior mobile sensing systems
have explored a variety of sensing modalities that have enabled a
wide range of innovative applications. Among them, accelerometer,
microphone and physiological sensors are some of the mostly ex-
plored sensing modalities. For example, Mokaya et al. developed
an accelerometer-based system to sense skeletal muscle vibrations
for quantifying skeletal muscle fatigue in an exercise setting [33].
Nirjon et al. developed MusicalHeart [35] which integrated a micro-
phone into an earphone to extract heartbeat information from audio
signals. Nguyen et al. designed an in-ear sensing system in the form
of earplugs that is able to capture EEG, EOG, and EMG signals for
sleep monitoring [34]. Recently, researchers have started exploring
using wireless radio signal as a contactless sensing mechanism. For
example, Wang et al. developed WiFall [45] that used wireless radio
signal to detect accidental falls. Fang et al. used radio as a single
sensing modality for integrated activities of daily living and vital
sign monitoring [17]. In this work, we explore infrared light as a
new sensing modality in the context of ASL translation. It comple-
ments existing mobile sensing systems by providing a non-intrusive
and high-resolution sensing scheme. We regard this work as an
excellent example to demonstrate the usefulness of infrared sensing
for mobile systems. With the incoming era of virtual/augmented
reality, we envision infrared sensing will be integrated into many
future mobile systems such as smartphones and smart glasses.

10 CONCLUSION
In this paper, we present the design, implementation and evaluation
of DeepASL, a transformative deep learning-based sign language
translation technology that enables ubiquitous and non-intrusive
ASL translation at both word and sentence levels. At the word
level, DeepASL achieves an average 94.5% translation accuracy
over 56 commonly used ASL words. At the sentence level, DeepASL
achieves an average 8.2% word error rate on translating unseen
ASL sentences and an average 16.1% word error rate on translating
ASL sentences performed by unseen users over 100 commonly used
ASL sentences. Given the innovation solution it provides and its
promising performance, we believe DeepASL has made a significant
contribution to the advancement of ASL translation technology.

ACKNOWLEDGMENTS
Wewould like to thank Dr. John Stankovic for being the shepherd of
this paper. We are also grateful to the anonymous SenSys reviewers
for their valuable reviews and insightful comments. This research
was partially funded by NSF awards #1565604 and #1617627.



DeepASL SenSys ’17, November 6–8, 2017, Delft, Netherlands

REFERENCES
[1] 2016. PWRcheck DC power analyzer. http://www.westmountainradio.com/

product_info.php?products_id=pwrcheck. (2016).
[2] 2017. American Deaf And Hard of Hearing Statistics. http://www.ncra.org/

Government/content.cfm?ItemNumber=9450. (2017).
[3] 2017. American Sign Language | NIDCD. https://www.nidcd.nih.gov/health/

american-sign-language. (2017).
[4] 2017. Leap Motion. https://www.leapmotion.com/. (2017).
[5] 2017. LeapMotionAPI. (2017). https://developer.leapmotion.com/documentation/

python/api/Leap_Classes.html.
[6] 2017. WHO | Deafness and hearing loss. http://www.who.int/mediacentre/

factsheets/fs300/en/. (2017).
[7] 2017. Wikipedia | List of sign languages. https://en.wikipedia.org/wiki/List_of_

sign_languages. (2017).
[8] Kalpattu S Abhishek, Lee Chun Fai Qubeley, and Derek Ho. 2016. Glove-based

hand gesture recognition sign language translator using capacitive touch sen-
sor. In Electron Devices and Solid-State Circuits (EDSSC), 2016 IEEE International
Conference on. IEEE, 334–337.

[9] Yannis M Assael, Brendan Shillingford, Shimon Whiteson, and Nando de Freitas.
2016. LipNet: Sentence-level Lipreading. arXiv preprint arXiv:1611.01599 (2016).

[10] Helene Brashear, Thad Starner, Paul Lukowicz, and Holger Junker. 2003. Using
Multiple Sensors for Mobile Sign Language Recognition. In Proceedings of the 7th
IEEE International Symposium on Wearable Computers (ISWC ’03). IEEE Computer
Society, Washington, DC, USA, 45–. http://dl.acm.org/citation.cfm?id=946249.
946868

[11] Xiujuan Chai, Guang Li, Xilin Chen, Ming Zhou, Guobin Wu, and Hanjing Li.
2013. Visualcomm: A tool to support communication between deaf and hearing
persons with the kinect. In Proceedings of the 15th International ACM SIGACCESS
Conference on Computers and Accessibility. ACM, 76.

[12] Xiujuan Chai, Guang Li, Yushun Lin, Zhihao Xu, Yili Tang, Xilin Chen, and Ming
Zhou. 2013. Sign language recognition and translation with kinect. In IEEE Conf.
on AFGR.

[13] Ching-Hua Chuan, Eric Regina, and Caroline Guardino. 2014. American Sign Lan-
guage recognition using leap motion sensor. InMachine Learning and Applications
(ICMLA), 2014 13th International Conference on. IEEE, 541–544.

[14] Fabio Dominio, Mauro Donadeo, and Pietro Zanuttigh. 2014. Combining multiple
depth-based descriptors for hand gesture recognition. Pattern Recognition Letters
50 (2014), 101–111.

[15] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. 2015. Long-term
recurrent convolutional networks for visual recognition and description. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2625–2634.

[16] Yong Du, Wei Wang, and Liang Wang. 2015. Hierarchical recurrent neural net-
work for skeleton based action recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 1110–1118.

[17] Biyi Fang, Nicholas D. Lane, Mi Zhang, Aidan Boran, and Fahim Kawsar. 2016.
BodyScan: Enabling Radio-based Sensing on Wearable Devices for Contactless
Activity and Vital Sign Monitoring. In The 14th ACM International Conference on
Mobile Systems, Applications, and Services (MobiSys). 97–110.

[18] Alex Graves et al. 2012. Supervised sequence labelling with recurrent neural
networks. Vol. 385. Springer.

[19] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber.
2006. Connectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning. ACM, 369–376.

[20] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In Acoustics, speech and signal
processing (icassp), 2013 ieee international conference on. IEEE, 6645–6649.

[21] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. 2001.
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.
(2001).

[22] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[23] Jack Hoza. 2007. It’s not what you sign, it’s how you sign it: politeness in American
Sign Language. Gallaudet University Press.

[24] Kehkashan Kanwal, Saad Abdullah, Yusra Binte Ahmed, Yusra Saher, and Ali Raza
Jafri. 2014. Assistive Glove for Pakistani Sign Language Translation. InMulti-Topic
Conference (INMIC), 2014 IEEE 17th International. IEEE, 173–176.

[25] Jonghwa Kim, Johannes Wagner, Matthias Rehm, and Elisabeth André. 2008.
Bi-channel sensor fusion for automatic sign language recognition. In Automatic
Face & Gesture Recognition, 2008. FG’08. 8th IEEE International Conference on.
IEEE, 1–6.

[26] Vasiliki E Kosmidou and Leontios J Hadjileontiadis. 2009. Sign language recog-
nition using intrinsic-mode sample entropy on sEMG and accelerometer data.
IEEE transactions on biomedical engineering 56, 12 (2009), 2879–2890.

[27] Yun Li, Xiang Chen, Jianxun Tian, Xu Zhang, Kongqiao Wang, and Jihai Yang.
2010. Automatic recognition of sign language subwords based on portable

accelerometer and EMG sensors. In International Conference on Multimodal Inter-
faces and the Workshop on Machine Learning for Multimodal Interaction. ACM,
17.

[28] Yun Li, Xiang Chen, Xu Zhang, Kongqiao Wang, and Z Jane Wang. 2012. A
sign-component-based framework for Chinese sign language recognition using
accelerometer and sEMG data. IEEE transactions on biomedical engineering 59, 10
(2012), 2695–2704.

[29] Scott K Liddell. 2003. Grammar, gesture, and meaning in American Sign Language.
Cambridge University Press.

[30] Giulio Marin, Fabio Dominio, and Pietro Zanuttigh. 2014. Hand gesture recogni-
tion with leap motion and kinect devices. In Image Processing (ICIP), 2014 IEEE
International Conference on. IEEE, 1565–1569.

[31] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez Arenas, Kan-
ishka Rao, David Rybach, Ouais Alsharif, Haşim Sak, Alexander Gruenstein,
Françoise Beaufays, and Carolina Parada. 2016. Personalized speech recognition
on mobile devices. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on. IEEE, 5955–5959.

[32] PedroMelgarejo, Xinyu Zhang, Parameswaran Ramanathan, and David Chu. 2014.
Leveraging directional antenna capabilities for fine-grained gesture recognition.
In Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 541–551.

[33] Frank Mokaya, Roland Lucas, Hae Young Noh, and Pei Zhang. 2016. Burnout:
a wearable system for unobtrusive skeletal muscle fatigue estimation. In Infor-
mation Processing in Sensor Networks (IPSN), 2016 15th ACM/IEEE International
Conference on. IEEE, 1–12.

[34] Anh Nguyen, Raghda Alqurashi, Zohreh Raghebi, Farnoush Banaei-kashani,
Ann C Halbower, and Tam Vu. 2016. A Lightweight And Inexpensive In-ear Sens-
ing System For Automatic Whole-night Sleep Stage Monitoring. In Proceedings
of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM. ACM,
230–244.

[35] Shahriar Nirjon, Robert F Dickerson, Qiang Li, Philip Asare, John A Stankovic,
Dezhi Hong, Ben Zhang, Xiaofan Jiang, Guobin Shen, and Feng Zhao. 2012.
Musicalheart: A hearty way of listening to music. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems. ACM, 43–56.

[36] Nikhita Praveen, Naveen Karanth, andMSMegha. 2014. Sign language interpreter
using a smart glove. In Advances in Electronics, Computers and Communications
(ICAECC), 2014 International Conference on. IEEE, 1–5.

[37] Abraham Savitzky and Marcel JE Golay. 1964. Smoothing and differentiation of
data by simplified least squares procedures. Analytical chemistry 36, 8 (1964),
1627–1639.

[38] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[39] Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. 2011. Parsing nat-
ural scenes and natural language with recursive neural networks. In Proceedings
of the 28th international conference on machine learning (ICML-11). 129–136.

[40] Thad Starner, Joshua Weaver, and Alex Pentland. 1998. Real-time american
sign language recognition using desk and wearable computer based video. IEEE
Transactions on Pattern Analysis andMachine Intelligence 20, 12 (1998), 1371–1375.

[41] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[42] Noor Tubaiz, Tamer Shanableh, and Khaled Assaleh. 2015. Glove-based continu-
ous Arabic sign language recognition in user-dependent mode. IEEE Transactions
on Human-Machine Systems 45, 4 (2015), 526–533.

[43] Dominique Uebersax, Juergen Gall, Michael Van den Bergh, and Luc Van Gool.
2011. Real-time sign language letter and word recognition from depth data. In
Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference
on. IEEE, 383–390.

[44] Ulrich Von Agris, Jörg Zieren, Ulrich Canzler, Britta Bauer, and Karl-Friedrich
Kraiss. 2008. Recent developments in visual sign language recognition. Universal
Access in the Information Society 6, 4 (2008), 323–362.

[45] Yuxi Wang, Kaishun Wu, and Lionel M Ni. 2017. Wifall: Device-free fall detection
by wireless networks. IEEE Transactions on Mobile Computing 16, 2 (2017), 581–
594.

[46] Jian Wu, Zhongjun Tian, Lu Sun, Leonardo Estevez, and Roozbeh Jafari. 2015.
Real-time American sign language recognition using wrist-worn motion and
surface EMG sensors. InWearable and Implantable Body Sensor Networks (BSN),
2015 IEEE 12th International Conference on. IEEE, 1–6.

[47] Zahoor Zafrulla, Helene Brashear, Harley Hamilton, and Thad Starner. 2010. A
novel approach to american sign language (asl) phrase verification using reversed
signing. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2010
IEEE Computer Society Conference on. IEEE, 48–55.

[48] Wentao Zhu, Cuiling Lan, Junliang Xing, Wenjun Zeng, Yanghao Li, Li Shen,
and Xiaohui Xie. 2016. Co-occurrence Feature Learning for Skeleton Based
Action Recognition Using Regularized Deep LSTM Networks. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press,
3697–3703. http://dl.acm.org/citation.cfm?id=3016387.3016423

http://www.westmountainradio.com/product_info.php?products_id=pwrcheck
http://www.westmountainradio.com/product_info.php?products_id=pwrcheck
http://www.ncra.org/Government/content.cfm?ItemNumber=9450
http://www.ncra.org/Government/content.cfm?ItemNumber=9450
https://www.nidcd.nih.gov/health/american-sign-language
https://www.nidcd.nih.gov/health/american-sign-language
https://www.leapmotion.com/
https://developer.leapmotion.com/documentation/python/api/Leap_Classes.html
https://developer.leapmotion.com/documentation/python/api/Leap_Classes.html
http://www.who.int/mediacentre/factsheets/fs300/en/
http://www.who.int/mediacentre/factsheets/fs300/en/
https://en.wikipedia.org/wiki/List_of_sign_languages
https://en.wikipedia.org/wiki/List_of_sign_languages
http://dl.acm.org/citation.cfm?id=946249.946868
http://dl.acm.org/citation.cfm?id=946249.946868
http://dl.acm.org/citation.cfm?id=3016387.3016423

	Abstract
	1 Introduction
	2 Background, State-of-the-Art, and Design Choice
	2.1 Characteristics of ASL
	2.2 State-of-the-Art ASL Translation Systems
	2.3 Design Choice

	3 Challenges and Our Solutions
	4 System Overview
	5 System Details
	5.1 ASL Characteristics Extraction
	5.2 Word-Level ASL Translation
	5.3 Sentence-Level ASL Translation

	6 Evaluation
	6.1 Experimental Setup
	6.2 Word-Level Translation Performance
	6.3 The Necessity of Model Components
	6.4 Sentence-Level Translation Performance
	6.5 Robustness of ASL Translation in the Field
	6.6 System Performance

	7 Applications
	7.1 Application#1: Personal Interpreter
	7.2 Application#2: ASL Dictionary

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

