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ABSTRACT
Curiosity is a critical skill that spurs learning, but is often found
to decline with age and schooling. Recent research has shown
that peer interaction may serve a special role in inducing curiosity
through increased uncertainty and conceptual conflicts, since peers
have similar knowledge and ability. For a virtual agent to stimu-
late curiosity in peer-interaction contexts , the virtual peer should
be able to engage in curiosity-scaffolding behaviors such as argu-
mentation and hypothesis formulation. Consequently, the agent
must be capable of on-task and open-ended reasoning required
to express these verbal behaviors, while also exhibiting peer-like
cognitive abilities. Automatic data-driven generation of curiosity-
scaffolding behaviors for virtual peers is important given the spon-
taneity of child-child conversations, their latent reasoning processes
and open-endedness required of curiosity-scaffolding interaction.
In this paper, we design and implement a virtual peer that can carry
out curiosity-stimulating verbal behaviors while engaged in discus-
sion during multi-party board game play. We use a combination
of child knowledge-graph construction and child-child interaction
driven modeling to generate game-context appropriate behaviors
that are compatible with 9-14 year old children. Encouraging hu-
man evaluation of the generated behaviors and generalizeability of
the generation framework to other tasks opens up new directions
in incorporating open-endedness and science talk in virtual agents
that will make them truly play a peer role in learning.
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1 INTRODUCTION
Some of you probably sat alone taking apart clocks or radios to see
how they worked. Others may have sat with friends or classmates to
build a computer from scratch. Following prior work, we define cu-
riosity as this strong desire to learn or know more about something
or someone [? ]. Curiosity often develops in response to external
stimuli that evoke knowledge gap and knowledge dissonance [23].
It is one of the important social-emotional learning skill that leads
to exploratory knowledge seeking [1]. Recent studies show that
interpersonal knowledge seeking behaviors exert a stronger influ-
ence on curiosity than oneś own behaviors, during small group
learning among 5th and 6th graders[48]. In particular, behaviors
that elicit uncertainty and conceptual conflict amongst peers, such
as question asking, argumentation, hypothesis verbalization and
justification, tend to evoke not only individual, but joint curiosity
across group members[36].

Game play provides special opportunities to assess and support
curiosity through a safe and playful environment to experience
uncertainty and exploration, in the individual[21] and group[52]
setting. The scaffolding for "social connectedness and meaningful
participation" that a game provides[18] also makes it an engaging
activity for virtual peers that simulate the appearance and ability
of a real child. Peer scaffolding has been shown to support posi-
tive development in children for curiosity[15], growth of mind[37],
social interaction[3], and literacy[44].

The open-ended nature of curiosity raises two challenges for
a virtual peer to fulfill curiosity-stimulating social scaffoldings.
First, the virtual peer has to be capable of engaging in behaviors
that provide open-ended possibilities to evoke knowledge gap and
uncertainty[30], such as creating new hypotheses or arguing for
alternate viewpoints. Open-ended possibilities create opportunities
for others to respond to uncertainty and alternatives and in turn ex-
hibit similar behaviors. Second, the virtual peer has to demonstrate
equal abilities, in order to elicit the kind of cognitive dissonance
that evokes curiosity, since children tend to challenge and compare
the correctness of one another’s ideas, but may accept adults’ ideas
unthinkingly due to their high knowledge authority[38, 41].

In this work, we study the virtual peer’s ability to scaffold curios-
ity in the context of a custom-designed cooperative board-game.
The game incorporates uncertainty by asking players to explore a
fictional space through question asking and discussion, and then to
take calculated risks based on what they think they know. In the
game, both game state updates (e.g. drawing cards, using resources)
and curiosity-related player behavior (e.g. generating hypotheses,
asking questions, making arguments) serve as game moves. There
is therefore a need for real-time reasoning that processes both
spontaneous peer interactions and dynamic game state updates; A
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limited repertoire of scripted conversation moves or Wizard-of-Oz
manipulation would limit the agent’s ability to produce open-ended,
peer-like and spontaneous-sounding verbal behaviors during dis-
cussion.

Data and machine learning driven generation of verbal behav-
iors through reasoning over social interactions and current game
state is a more adaptive solution for the spontaneous generation of
behaviors with open-ended possibilities and peer-like characteris-
tics. In the current work, we develop a fully data-driven technique
for the generation of key curiosity-inducing behaviors. We gener-
ate verbal behaviors to be game-context related and peer-targeted.
More specifically, we construct a distributional semantic knowl-
edge representation for the target age-group, that the virtual agent
can query based on the contextual game information and intended
curiosity-evoking behavior. To circumvent the lack of sufficient
child-child game-play data, we leverage the use of large, public
domain multimedia content available to children for knowledge
construction. This affords the agent the capability to generate di-
verse responses such as new hypotheses and alternatives not seen in
previous interactions. To incorporate game-specific constraints that
control the extent of open-endedness, we then adapt the generic
knowledge representation for the game using game-related syntag-
matic relations extracted from game-play data. Finally, in order to
generate curiosity related behaviors, we identify important seman-
tic and syntactic patterns that are triggered when these behaviors
are displayed by children during game-play. These patterns inform
specific search heuristics over the constructed knowledge represen-
tation to generate context appropriate behaviors. We also extract
language motifs from game-play data as templates to generate the
actual natural language utterances for the peer virtual player.

For every step in this generation process that involves data ma-
nipulation , we use human evaluation to measure performance of
data-driven techniques, thus ensuring that game and context appro-
priate behaviors are generated despite noisy data and algorithmic
imperfections. We discuss the generalizeability of the child-centric
adaptations made to virtual agent cognitive architectures and the
behavior generation framework that makes game-specific adapta-
tions to general knowledge representation to other collaborative
tasks that require open-ended and creative peer interactions.

The main contributions of this paper are two-fold:

(1) We design and implement a novel data-driven approach for
the generation of curiosity evoking verbal behaviors and
utterances for a virtual peer engaged in a discussion based
board game.

(2) We propose a peer-centered design approach for knowl-
edge representation and language modeling that uses a com-
bination on of-task child-child interaction data and child-
centered media corpus, and discuss the implications of this
approach.

2 RELATEDWORK
Peers are individuals of similar age, ability, knowledge, experience
and social status [17, 40]. Equal relationship among child peers is
particularly beneficial for learning because, when a conceptual con-
flict or alternative opinion arises, both perspectives have an equal
potential to validity without special authority, which may lead to

active discussion and argument in resolving and integrating differ-
ent views [41]. While symmetric age and social status have been
generally applied in virtual peers, most of them hold asymmetric
knowledge and ability compared to the real child, such as tutors [3],
teachable tutees[5, 28], and supportive companions [15, 37]. There
are only a few exceptions where the virtual peer is intended to
closely simulate child ability. Sam is a virtual peer who can engage
in collaborative storytelling and is controlled by young children
with autism[51] and Alex is a culturally-authentic virtual peer who
engages a child in science talk while switching dialects[7]. Both
virtual peers simulate peer-like behaviors but have limited ability
to engage in behaviors with open-ended possibilities as their verbal
behaviors are pre-scripted or extracted from the limited child-child
interaction corpus.

Cognitive architectures provide the core frameworks behind
the reasoning modules in virtual agents. Most cognitive architec-
tures focus on simulating optimal intelligence. There are only a few
studies that investigate cognitive architecture through the lens of
development and individual differences[22, 31]. They identify three
main cognitive factors that influence human intelligence - knowl-
edge change, memory and processing capacity, and strategy choice
with experience. While there is a lack of precise understanding of
the number of knowledge structures that can be activated and pro-
cessed at one time that match with different developmental stages,
media exposure is considered one of the main sources for childrenś
knowledge acquisition [46], and data-driven behavior modeling
has provided a way to simulate non-optimal cognitive processes
of strategy choice and language generation in scenarios such as
tutor-tutee interaction[34], and previously mentioned child-child
interaction in science discovery and storytelling[7, 51]. We propose
a fully data-driven adaptation of the cognitive architecture model
towards the generation of peer-like behaviors with open-ended
possibilities.

Semantic memory stores the required reasoning module of the
virtual agent for generation of these complex behaviors from the
current game context. The virtual agent’s semantic memory en-
codes wordmeanings, facts, concepts, and general world knowledge
required for day-to-day reasoning. Semantic memory has tradi-
tionally been represented as a semantic graph consisting of nodes
(concepts and terms) and edges(relationships)[27]. For example, the
concepts dog, animal are connected by the edge is-a. There are sev-
eral manually curated or automatically generated knowledge bases
such as WordNet[13], ConceptNet[29] and NELL[35] etc., that are
sometimes directly incorporated into an existing virtual agent dia-
logue manager [44] for reasoning and next utterance formulation.
However, these knowledge bases contain factual information and
common sense syntagmatic associations (such as lions roar) that
are very generic for game play and simulate an adult’s semantic
memory. Distributional models of semantic memory[? ] use text
corpus-based co-occurrence models like LSA[26] or the more recent
Word2Vec[33] to create a semantic vector space in which different
concepts(terms) in a large text corpus reside, like ??. In order to
create knowledge graphs that support peer-like reasoning, we draw
inspiration from such distributional models. Such techniques have
previously been used by [6, 20, 54] to project terms into relation-
specific vector spaces using labeled data and supervised machine
learning. Our semantic knowledge graph is similarly constructed
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from a child-centered corpus, and we do so in a semi-supervised
manner.

Reasoning over the knowledge graph involves exploring poten-
tial and reasonable relations among various entities to respond to
a query or complete a task. Open-endedness of discussion based
dialogue means that different kinds of relationships can emerge.
The game we consider, however, provides a context within which
relatively constrained discussion takes place, thereby limiting the
type of relationships to reason over. We again rely on data to learn
the relationships deemed important for game play and for curiosity-
stimulating behavior generation. Automated biological hypothesis
generation OpenCog also utilizes relationships that are extracted
automatically from free text[14]. Most automatic relation extrac-
tion methods like these use dependency parsing to break sentences
down to their syntactic tree-structures to extract underlying rela-
tions as shown in ??. For instance,[11] design a semi-supervised
method for extracting protein-protein relations based again on
dependency parse trees. The Episodic-logic framework[45] uses
alternative parsing methods based on propositional logic that create
a semantic representation of natural language. Inspired by these
works, we develop a generalized approach based on dependency
parsing for behavior-specific relation extraction.

The generation of natural language utterances requires the con-
struction of a child-centered language model to capture common
lexical patterns children use during game play. Due to a lack of suf-
ficient child-child data for training an automatic natural language
generation model, statistical pattern-mining based approaches are
a more feasible strategy. [4] extract response structures from pre-
viously annotated sequences to generate factoid questions. [10]
investigate and extract dialogue patterns from human-human inter-
actions to be used by a software agent to interact with real humans
. [42] construct sentence patterns in the form of sequences of parts-
of-speech and a simple lexicon of words and then populate template
sequences with appropriate words from the lexicon. In a similar
fashion, we design our natural language generationmethod through
extracting lexical patterns and templates in a data-driven manner,
which are then appropriately completed with content words based
on the agent’s reasoning.

3 METHOD
In this study, we build a virtual peer that can generate key curiosity-
inducing behaviors including justification, argumentation and hy-
pothesis verbalization to elicit uncertainty and conceptual conflict
in group members. We used a child-centered modeling approach to
enable the virtual peer to think and behave like a competent 9-14
year old child in a conversation-based collaborative game called
Outbreak [52]. Outbreak is a question-asking and discussion driven
board game for a group of two to five players to collaboratively
investigate hidden threats in a series of broken science labs (threats
such as haunted by a ghost, leaking chemicals etc.). Each time the
players enter a new room, they ask questions using provided ques-
tion templates to the game master (e.g. What happens if..., Is the
room...) for up to two minutes. After the question asking phase,
players enter the discussion phase when they have to collabora-
tively decide the right resource cards with skills needed to conquer
the threats. The 7 skills in Outbreak are fight, love animal, hack

Figure 1: Outbreak Game Play Scenario (required skills cir-
cled)

(computers, software), block, run fast, friend and see. We chose Out-
break as the study activity because it provides an engaging and
exploratory experience with sustained level of uncertainty, and
allows the virtual peer to carry out key curiosity-inducing social
scaffoldings to validate curiosity elicitation strategies. An example
game scenario is provided in 1 and a small conversational snippet
is illustrated below:
Question asking phase:
Player 1: "Is there a zombie in the room?"
Game master: "Yes, there is a zombie in the room."
Discussion phase:
Player 2: "I think we should use the helmet because she said there is
some sort of zombie in the room, it might eat our brains, (laughter)."

Outbreak Data Collection. We collected child-child interaction
data of 10 groups of 3-4 players, 9-14 years old (30 participants in to-
tal with 13 female participants) playing Outbreak in a controlled lab
setup. We recruited from CITY NAME public and charter schools,
and a YMCA community center in a historically under-resourced
neighborhood. All participants’ parents gave consent, and partici-
pants gave minor assent. The confederate experimenter first runs a
scripted practice round to explain the game rules while also playing
as the game master. Participants then play the Outbreak game for
either 40 minutes or until they complete all rooms and reach the end
of the game. Participants then complete a self-report questionnaire
for affective arousal. We used four camcorder recorders, four web-
cam devices and a fisheye camera to record the video data including
the front face and group view of each participant and a top-down
view of the table and game board. The audio data is recorded using
lapel microphone attached to the collar of each participant. We
transcribed and annotated a convenience sample of the first six
groups of the game play.
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Verbal Behavior Definition
Justification Showing something to be right

or reasonable by making it clear
Argument A coherent series of reasons or

facts to support or establish a point of view
Hypothesis Expressing one or more different
Verbalization possibilities or theories to explain

a phenomenon by relating two variables

Figure 2: System Architecture of the Virtual Peer

We used human annotators to annotate every clause in our cor-
pus for three verbal behaviors that have been correlated to increased
curiosity in past work[47, 48] - Justification, Argumentation and
Hypothesis Verbalization. Brief definitions for these behaviors are
provided in Table ??. Inter rater reliability (Krippendorf’s alpha)
for each of these annotations was above 0.7. Additionally, we also
annotate for game resources such as question templates, skill cards
and possible threats (termed as keywords) that players refer to in
these utterances.

We describes the cognitive architecture of the virtual peer in
2, that refers to key components of general cognitive architecture
proposed in ACT-R[2], Soar [25] and CLARION[50] along with
a tier for the data-driven adaptation. The cognitive architecture
includes the following modules (1) sensing - updates game status
by tracking the game elements on the table using marker-based
computer vision technology; (2) reasoning - plans and selects game
appropriate verbal behaviors that provides open-ended possibilities
and eliciting curiosity; (3) behavior generation - realize the verbal
behaviors through text-to-speech (TTS) using Amazon Polly, and
associated non-verbal behavior generation using Behavior Expres-
sion Animation Toolkit (BEAT) [8] and Unity game engine. In this
paper, we focus on describing the reasoning module that enables
the generation of required game behaviors, namely question asking

using question templates and suggesting a skill or card during the
discussion. We additionally enable reasoning for and generation
of curiosity-inducing verbal behaviors such as arguments and hy-
pothesis verbalization. We explain pertinent parts of the reasoning
module in detail.

Semantic and Procedural Memory. Short-term memory consists
of the agent’s current belief state for the game, the next chosen
behavior and utterance. This memory is constantly updated with
external stimuli and is refreshed at the beginning of every new game
round. Semantic memory encodes word meanings, facts, concepts,
and general world knowledge that agent uses to reason about the
game, while procedural memory maintain rules that are required
for planning the content and natural language utterance of different
verbal behaviors.

Processing Unit. The processing unit refers to the key reasoning
steps over the components of the cognitive architecture involving a)
elaboration - monitoring short-term memory, b) operator proposal
- propose operators appropriate to the current situation, and c)
operator selection - select the optimal operator. The corresponding
processing unit in our cognitive architecture includes the following
steps:

(1) Game Belief Updating - updates the virtual peer’s belief
of the game status; For example, Player 1 asks the game
master: "Is there a robot?" and the game master responds:
"Yes". The game belief updating module will register the
question and answer pair, and inquire the game rules and
child knowledge base to update the possible set of game
resources/skills that associate with the keyword "robot" (e.g.
fight, be friend, block)

(2) Behavior Content Planning - Plans for the content of le-
gitimate curiosity-inducing verbal behaviors according to the
game status updates. For example, in the discussion phase,
because the gamemaster provided the information that there
is a robot in the room, Player 1 suggests: "I think we should
use fight because she said there is a robot". The virtual peer
can provide alternative opinion through argument: "wait,
we will need hack because the robot could be broken", or
hypothesis generation: "what if the robot is not dangerous?
It may be lonely"

(3) Behavior Selection - Selects appropriate verbal behaviors
to generate that fulfill the purpose of game play with an
emphasis on curiosity-induction. For example, statistically,
the child may be more likely to make arguments following
another person’s suggestion than hypotheses, so the planned
argument behavior is chosen for generation more often than
hypothesis verbalization.

The game belief update and behavior planning are driven by a
child knowledge graph, a distributional representation of semantic
memory that is extracted from open domain child-centered media
data and adapted for the Outbreak task into an associative mapping
between skills and different keywords.

3.1 Encoding Children’s Semantic Knowledge
As previously described, the semantic memory (referred to as the
knowledge base in our framework) connects entities using relations
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Table 1: The Detailed Information of Collected Dataset

Data Source Size
Kindle Ebooks 9.67MB
Online Free Books 46.4MB
Board Game Rule Books 778KB
YouTube Videos Scripts 8.76MB
Facebook Children’s Literature Dataset 26.6MB
Total 92.3MB

that represent a shared encoding of their meaning. Meaning lies
at the cornerstone of nearly all aspects of human cognition and a
knowledge graph encodes the relative meaning of concepts accrued
from repeated episodic experiences. Hence, we begin with the con-
struction of a general child-centered knowledge graph and develop
strategies to traverse this graph to respond to different situations
and generate corresponding behaviors.

Collecting Auxiliary Dataset. Our existing child-child game-play
data consisting of real children’s conversations can be prohibitive
to the construction of a knowledge graph due to a) small size, and b)
children using repeated skills and keywords across different game
sessions. We augment this dataset with larger and more generic
textual data and ensure that this data contain the knowledge that
real children of the target age group are exposed to[46], so as to be
able to encode conceptual associations that a human peer is likely
to make. We reviewed articles and surveys about children’s media
usage patterns and preferences for specific genres. For instance,
[39] find that children in the age group of 10-18 prefer FM Radio
and Television as their favorite digital media. [43] find that about
84% of children in their study had access to home Internet and
81% of them watched videos on the Internet, indicating that online
videos have become more popular among the youth as a source of
information. Besides, e-books also attract a substantial number of
children and are gradually replacing traditional paper-backs. Along
the dimension of genre, we explored the kinds of information that
children are most interested in. [49] conducted a survey of reading
preferences for children aged 2-18. Their results show that the top 3
categories that children are most interested in are animals, science,
and sports. Davila et al. review the authorized reading materials
and actual reading materials preferred by children in their work [9].
Their study reveals that boys and girls equally like fictions which
contain horror, humor and adventure. They also suggest that the list
of bestselling children’s books is closely related to young audiences’
preference, which inspired us to refer to the bestseller ranks of
books in recent years. Based on the above review of research and
surveys, we collected text data covering popular media types (e-
books, video transcripts and board game rule books) and genres
(like fantasy, history, science and so on). We also included the
children’s literature corpus released by Facebook consisting of fairy
tales and story books from Project Gutenberg[16]. Amount of data
of each media type is listed in 1

3.1.1 Vector Spaces as Child Knowledge Representation. We train
a distributed word embedding model (Word2Vec[33]) on the col-
lected children’s corpus to transform words into vector representa-
tions. In distributed models, the semantics or meaning of the word
is distributed across all dimensions of the vector that encodes it.
In the resulting vector space, plenty of linguistic regularities and
patterns are encoded through the learned word vectors. The biggest
merit of such models is that semantically similar words are located
close to each other and tend to form clusters. This characteristic is
useful for exploring and discovering new pairs of words that share
similar semantic relations. We exploit this characteristic to adapt
this generic semantic vector space to the Outbreak task.

3.1.2 Task-Specific Transformation of Knowledge Representation.

AKeyword - SkillMapping forOutbreak. A competent player
of the Outbreak game should be able to choose and suggest a reason-
able skill card given the current game context in order to overcome
potential threats. The game context information consists of threats
(keywords) mentioned by the game master and other players in
previous turns and provides clues to the virtual child to select ap-
propriate skill cards. For example, if someone asked if there is a
computer in the room, here computer is a keyword, and the virtual
child may suggest the skill hack as a reasonable response since it
relates to computer. The knowledge graph constructed previously
can be too generic to relate these two concepts since they may not
have co-occurred in the larger child-centered corpus. Hence, we
use a semi-supervised heuristic to map skill words and plausible
keywords in the generic knowledge graph, denoted by K . We use
a small set of known mappings between skills and keywords ex-
tracted from the Outbreak game play corpus as a seed. Our heuristic
method can be represented in the following formulation:

arдmin[α(∥ x − xc ∥) + β ∥ x − xs ∥] (1)

, where x is any vector in K , xc is the vector centroid of keywords
that were mapped to a given skill s , and xs is the word vector of
the skill word. The first part of this formulation finds the closest
neighbors of the keywords that were linked to a particular skill
since we hypothesize that such words are also related to the skill.
The other part selects terms that are closest to the corresponding
skill. α and β control the relative strength of association of a new
potential keyword to already existing keywords and the skill itself.
The method is also illustrated in Figure 3. Table 2 shows top re-
trieved potential keywords for a few skills. This process results in
links between potential new keywords and skills being established
apart from those already present in the limited game play data.
This is useful for simple verbal behaviors like making a suggestion
to put forth a skill when a new keyword is encountered during
future games. Our virtual agent would suggest the skill that is most
strongly mapped to that keyword by 1, so the virtual agent may say
"it would be smart to put love animals because there is a dog" given
the keyword dog. During the Q&A phase of the game, the question
templates can be completed by picking a new related keyword for a
certain skill and filling it into the template. For example, if the vir-
tual agent has the skill see and a question like "Does the room look
dark?" might be asked. These keyword-skill mappings enable the
virtual agent to engage in basic game play with real children. We
evaluate these mappings manually, which we describe in Section 4
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Table 2: The Top Keywords For a Part of Skill Words

Skill Fight Love Animals Hack See
Keywords Enemy Animal Robot Escape

Attack Dog Machine Light
Terrible Creature Computer Dark
Deadly Cat Software Get away
Monster Bird Automatic Bright
Powerless Beast Setup Moonlight
Danger Kitten Engine Sunlight
Desperate Monkey Mechanical Run
Kill Snake Radio Dim
Destroy Alive Wires Sight

Figure 3: The Figure of Proposed Method.

Figure 4: Retrofitting Knowledge Graph to be more game-
specific: The dots with the same color are mapped to the
same skill

Adapting Knowledge Base for Outbreak. During the course
of game play, we expect certain associations in the knowledge graph
to be more reinforced than others and a gradual transformation of
the knowledge base to optimize strategies for Outbreak that result in
more wins. This observation is drawn from the memory activation
hypothesis wherein the strength of association between certain
cognitive units increases with practice and repeated tasks, forming
a working memory for the task[? ]. For instance, children often
start associating words like "Zombie" and "Monster" with "fight" or
"block" as they play more rounds. We adapt the general knowledge
network to a game-specific one using the retrofitting method from
[12] to modify the vector space based on the newly extracted and
evaluated associations. The idea of retrofitting word vectors is to
force a word to be close, not only to its original neighborhood, but
also to other concepts that share special edges with it. We pictorially
depict this transformation in Figure 3.

3.2 Curiosity-related Verbal Behaviors
Generation

Our ultimate goal is for the virtual child to induce curiosity in other
players during game play, and previous work [36, 48] has shown
that three verbal behaviors in particular - Justification, Argumenta-
tion and Hypothesis Verbalization - can stimulate curiosity during
peer-peer interaction. While the generated keyword - skill associa-
tions can already produce simple verbal behaviors to support basic
game play, we still hope to support higher order reasoning that is
crucial to elicit curiosity stimulating behaviors. In this section, we
describe how our pre-built knowledge network can be leveraged to
generate these three verbal behaviors.

3.2.1 Extracting Dependency Relations for Behavior Generation.
Inspired from related work in the area of automatic relation ex-
traction, we begin by doing a dependency relation based syntactic
analysis of the game-play data to discover common syntactic struc-
tures children use when they display these three verbal behaviors.
However, the size of our child-child data is limited and curiosity-
stimulating behaviors are sparse, which makes the analysis results
less convincing. Once again, we turned to auxiliary datasets that
have been created for different verbal behaviors. For example, AI2
Elementary Science Questions corpus was manually annotated for
6 kinds of justification [19] and the Internet Argument Corpus
has been annotated for 3079 argument instances [53]. Dependency
parsing was applied to both datasets and the frequency of every
dependency relation was measured. We find that the dependency
relations of amod and dboj rank in the top 7 among 40 relations.
The other top relation types such as det and root are essential gram-
matical constructs present in most sentences but do not play major
semantic roles. We interpret the high frequency of amod and dobj
as proposing properties of a keyword amod or actions that can be
done by and to keywordsdobj. For instance, a dangerous monster
or the ghost can kill us. For hypothesis verbalization, to the best
of our knowledge, there is no publicly available auxiliary corpus.
Moreover, hypothesis verbalization is rarely done in the outbreak
corpus but is found to be specifically associated with making more
than one group member curious [36]. [24] claim that a hypothesis
is a conjectural statement that encodes the relation between two
or more variables, so amod and dobj can still serve as potential
relations between concepts and are useful for generating conjec-
tural statements. For each keyword, we extract various potential
relational words based on the above three relations (e.g. for key-
word monster, an extracted relation word is dangerous through the
relation amod). These relations between words not only serve to
discern attributes of objects or actions they can do, but may also be
the latent reasoning that supports the choice of a specific skill card.

3.2.2 Curiosity-related Verbal Behaviors Generation. The gen-
eral strategy for behavior generation involves using the current
game context (keywords mentioned thus far during game play) to
construct queries and search the game-specific child knowledge
graph. The most generalizable search strategy we develop is the
bottom-up strategy: Given a keyword and skill, we find terms re-
lated by the amod,dobj relations that are semantically similar to
both, the skill and the keyword. For search, we start from the key-
word, and iterating over top semantically similar relation words,



Towards Automatic Generation of Peer-Targeted Science Talk in a Curiosity-Evoking Virtual AgentIVA’18, August 2018, Sydney , Australia

Figure 5: The Figure of Bottom Up Strategy in an Example

Figure 6: The Figure Showing the Strategy for NLG

we calculate their semantical similarities with the skill using the
following formula.

α ∗ sim(relatiion, skill) + β ∗ sim(keyword, skill) (2)

,where the sim(x, y) calculates the cosine similarity of vectors for
words x and y in the retrofitted task-adapted word vector space,
and α and β are used for controlling the relative strength of each
association. Figure 5 shows an example of the bottom up strategy
and the combination of the strategy with knowledge graph for final
utterance generation is shown in Figure 6.

For Justificationwe pick a keyword in the known game context
and use the knowledge graph to find an appropriate skill as before.
An acceptable reason is generated to support this associated using
the bottom-up approach. For example, if monster is a mentioned
keyword and fight is chosen as a possible skill to overcome the
monster. Words related to monster and fight are scored and ranked
using 2 and a top-scoring term is chosen to complete the justifica-
tion. A possible generated sentence can be: “I think we need fight
because there is gigantic monster there”.

Argument occur when one gives reasons to disagrees with some-
one else’s ideas. We find from child-child game play data that chil-
dren often argue against a skill suggested by other players. Suppose
we want to argue against a previous justification. So in this case
we are supposed to focus on the skill word fight, and based on
the mentioned keyword, say monster, we calculate the scores for
relation words as done in justification. After filling these words into
an argument pattern, the result may be like: We don’t need fight
because monster is not deadly. Providing an alternative perspective
rather than negative evaluation can also be another strategy for
argumentation. For this case, we start from the keyword but then
choose the next closest skill other than the one mentioned in the
context. For example, the next relevant skill word for monster is

Table 3: Examples of Generated Patterns

Verbal Behav-
iors

Generated Patterns

Justification KEYWORD is RELATION so we need SKILL.
I put SKILL down because it has RELATION
KEYWORD.

Argument There’s no RELATION KEYWORD there.
No SKILL, because this has no RELATION KEY-
WORD.

Hypothesis
Verbalization

Try SKILL what if there’s RELATION KEY-
WORD there.
Maybe like RELATION KEYWORD.

friend, and the final sentence is likely to be: No, what if the monster
is wretched?

Hypothesis verbalization always refers to expressing some un-
seen potential possibilities by providing a relation between two
entities. Using the above strategy, we can propose an unmentioned
angle or perspective about one keyword as a hypothesis. For in-
stance, the keyword monster is usually related with fight, but there
is another alternative that we select friend with the strategy to
generate a hypothesis verbalization like: But what if monster is
poor.

Apart from the bottom-up strategy, we also think of a top-down
strategy for creating more diverse sentences for verbal behavior
generation. This idea comes from one important observation about
the Outbreak data viz. that sometimes children may not use infor-
mation they acquire during the Q&A phase to relate entities and use
a more direct approach for their reasoning, which starts from the
skill cards they hold in their hands and try to form some plausible
reasons that allows them to use these cards. Here, for each skill
word, we calculate the scores of a combination of relation words and
keywords closely associated with the skill, and rank the resulting
list. This strategy is especially helpful for hypothesis verbalization
and question asking, which can be generated based on initiation
from the skill words with little past game context information. For
instance, for the virtual child to use the hack skill, our method may
output a sentence like: There might be an automatic door in the room.
Such a sentence is a logical hypothesis about what may exist in
the room and promotes other children to think more about other
plausible threats. A detailed example is shown as Figure 8.

Natural Language Utterance generation. We also try to create
sentence patterns for the generation of final surface forms(agent
utterance) of these verbal behaviors. Another dependency parsing
was performed on Outbreak game data, and for each verbal behav-
ior, we pick the Top 10 common syntactic structures and extract
the corresponding natural language instances that contain these
syntactic structures. These patterns are made generic by replacing
the key content words with placeholders like SKILL and KEYWORD,
to create templates that can be filled in real-time to generate new
utterances.
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Figure 7: The Figure of Top Down Strategy in an Example

Table 4: Examples of Real Children’s Dialogues and Gener-
ated Sentences

Verbal Behav-
iors

Real Sentences Generated Sentences

Justification Something is broken so
we need fix.

I think it’s fight because
there is gigantic mon-
ster there.

Argument We won’t need it
because there’s no
strength.

We don’t need fight be-
cause monster is not
deadly.

Hypothesis
Verbalization

Maybe a computer’s
falling.

What ifmonster is poor.

4 EVALUATION
Game Belief Update Evaluation. Precision and Recall are adopted

to evaluate the newly constructed keyword-skill associations. For
precision, we generated top 20 potential keywords for the 7 skills
in Outbreak and asked 4 in-house annotators to recognize reason-
able pairs based on their common-sense judgment of a reasonable
semantic relationship between a keyword and skill in the context
of the game. Since the definition of reasonable can be complex and
subjective, we disambiguate using majority vote among human an-
notators and leave out cases where even human annotators disagree.
Thus, we calculated precision as the proportion of confident rea-
sonable mappings that the computational model is able to correctly
retrieve and get a score of 0.8344. The Krippendorff’s alpha for
annotators’ inter-rater reliability is 0.8636. For Recall, we randomly
picked 200 words from the larger peer-targeted corpus and asked
annotators to map each word of ne or more of the 7 skills. We again
use majority vote as the ground truth for reasonable mappings. The
Krippendorff’s alpha was 0.8600. Our computational model is used
to find the corresponding highest ranked skills for these keywords
and to measure how many of one or more of them are correctly
retrieved. The recall was 0.6316.

Curiosity-related Verbal Behaviors NLGEvaluation. Weevaluated
the generated curiosity-related verbal behaviors for game and con-
text appropriateness. We extract artificial game contexts in the form
of keywords mentioned by other players/game master as the po-
tential context to reason over and plan behavior content from. We
generated 100 sentences for three verbal behaviors and also mixed
them with 100 randomly picked sentences from child-child game
play corpus. We asked the annotators to classify the behaviors as

Justifications, Hypothesis Verbalization and Argumentation based
on the generated utterance and the available context. The computed
accuracy for classification is 0.76 and the Krippendorff’s alpha for
agreement among annotators is 0.6536.

5 DISCUSSION
Curiosity-Inducing Behavior Generation. We validate that

the generated skill-keyword associations and verbal behaviors are
relevant to the current game context. The evaluation performance
of the skill-keyword association measures the success of automati-
cally extracting associative relationships between concepts in the
game using a game-adapted child-centered textual dataset. Even
though skills and key-words are specific to the Outbreak game,
we present a generalizable method of building a semantic memory
representation (knowledge graph) from a large target-appropriate
text corpus that uses an initial seed of syntagmatic associations
from human-human on-task data. The knowledge graph serves
as the primary source for task-based reasoning. This technique is
generally applicable to a wide range of tasks that require the virtual
agent or dialogue agent to reason over structured knowledge in a
constrained context. Incorporation of structured knowledge into
virtual agents is an emerging field for addressing the challenges of
personalization, intent understanding from context and semantic
relevance of responses[? ]. Recently, agents are using distributional
semantic memory for small reasoning tasks - robots that under-
stand analogies in human instructions[? ] or agents that detect
behavioral affordances such as objects that can be grasped, drunk,
worn, etc[? ]. Children also acquire semantic knowledge from visual
input and a potential future direction is to encode textual and visual
information in a common semantic space (as done in [? ]) for the
virtual agent to reason over multi-modal context.

We automate the agent’s curiosity-related verbal behavior gen-
eration for a limited number of syntactic relations between entities.
The promising evaluation of the generated curiosity-related be-
haviors for game-context appropriateness can potentially support
the automated generation of such behaviors in constrained task
settings. For instance, we can generate arguments, hypotheses and
justifications for the agent based on keywords extracted from con-
versational history. These behaviors are integral to scientific talk
and can be incorporated into intelligent pedagogical agents that
engage in educational games or peer-tutoring. Traditional knowl-
edge bases support basic semantic relationship such as type of, syn-
onyms, antonyms etc while our method supports syntactic relations
to generate context relevant and coherent sentences. Understand-
ing causal relations between concepts and the pragmatics of human
conversation are still unsolved, but crucial for engaging humans in
scientifically accurate talk.

In the adapted cognitive architecture proposed in this work,
we have developed the module for generation of curiosity related
behaviors. The procedural memory we propose also includes a
model that selects the next behavior that can fulfill the purpose of
game play or stimulate curiosity in other players. In future work,
we plan to build a behavior selection model that optimizes for
positive change in group curiosity (curiosity of all group members)
to carry out a full scenario testing of Outbreak game play with
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real children. This will be done in order to validate if curiosity-
stimulating behaviors selected and generated by the virtual peer
can stimulate curiosity in real children.

Peer-Targeted Knowledge Construction and LanguageMod-
eling. Augmentation of child-child interaction data with child-
centered media data allows for age-appropriate associations to
be learnt by our model. This is done to ensure co-equal participa-
tion of the virtual peer to facilitate constructive debate of ideas
instead of acceptance from an agent with higher authority. This is
not only crucial for effecting positive impact on curiosity, but also
leads towards the general modeling of virtual peers that display
symmetric age-appropriate cognitive abilities. We currently eval-
uate our approach for age-appropriate associations and peer-like
behaviors and linguistic patterns based on adults’ perceptions of
children’s reasoning and language. A thorough evaluation of the rel-
ative success of this data-driven technique should involve children
of the target age in the evaluation loop. Children may give implicit
evaluations for believability and age-appropriateness during their
interactions with the virtual peer. Crowd-sourcing with child work-
ers has just recently been explored [32] in the CHI community.
Manojlovic et. al have found that joint tasks assigned to parents
and children are more acceptable. There is potential new space to
generate creative tasks for children to evaluate the performance
of data-driven techniques for modeling of virtual peers that can
also serve as additional means to collect target specific data. This
can further fine-grained incremental development of virtual peer
technology rather than final user studies with children.

6 CONCLUSION
Recent research has shown that peer interaction may serve as
special stimuli in inducing curiosity by facilitating increased un-
certainty and conceptual conflicts. Collaborative games provide a
safe and fun setting to express uncertainty and impose the need
for social connectedness and participation that virtual agents can
leverage. Endeavoring towards this goal, we build a virtual peer
agent that can elicit curiosity scaffolding behaviors while engaging
in an open-ended discussion based board game. We develop and
implement a behavior generation module to realize age-appropriate
curiosity-inducing behaviors such as question asking, hypothesis
verbalization, argumentation, and justification during open-ended
discussion in a multi-party board game. We use a combination
of child knowledge base induction, game-specific adaptations to
the knowledge base and child-child corpus driven behavior and
language modeling to generate spontaneous and diverse curiosity-
inducing behaviors. Promising human evaluation of different stages
of the generation process for game-context appropriateness and
generalizeability of the generation framework to other tasks and
age-groups opens up encouraging new directions in peer virtual
agent modeling for open-ended game play and science reason-
ing tasks. We present the challenges involved in measuring age-
appropriateness and open-endedness of generated conversations
and propose to implement behavior selection to carry out user test-
ing for extrinsic validation of curiosity-related behavior generation.
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