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ABSTRACT
We conducted a 2×2 between-subjects experiment to exam-
ine the effects of two orientation and two gaze behaviors dur-
ing group conversations for a mobile, low degree-of-freedom
robot. For this experiment, we designed a novel protocol
to induce changes in the robot’s group and study different
social contexts. In addition, we implemented a perception
system to track participants and control the robot’s orien-
tation and gaze with little human intervention. The results
showed that the gaze behaviors under consideration affected
the participants’ perception of the robot’s motion and that
its motion affected human perception of its gaze. This mu-
tual dependency implies that robot gaze and body motion
must be designed and controlled jointly, rather than inde-
pendently of each other. Moreover, the orientation behaviors
that we studied led to similar feelings of inclusion and sense
of belonging to the robot’s group, suggesting that both can
be primitives for more complex orientation behaviors.
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1. INTRODUCTION
The idea that robots will interact around and with human

groups has recently motivated significant research efforts
within Human-Robot Interaction (HRI). For example, algo-
rithms for group detection [34, 66, 47] and engagement clas-
sification [33] have been developed. Planning for navigation
has begun to consider the social costs of crossing between
group members [48, 13]. Experimental evidence further sug-
gests that people establish similar spatial arrangements with
robots as they do with people during free-standing group
conversations [53, 76]. People position and orient them-
selves to maximize their opportunities to monitor each other
as well as maintain their group as a spatially distinct unit
from other nearby interactions. These spatial arrangements
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Figure 1: (a) Group conversation. (b) One member
is a robot and it orients towards the group center.
(c) The robot orients towards the speaker. (d) HRI
experiment where we tested these orientation be-
haviors along with two gaze behaviors.

are known as F-Formations [29] and often emerge as a circle
during conversations among multiple people (Fig. 1(a)).

Although we know that a robot’s body orientation may
induce reconfigurations of dyadic F-formations [31], little is
known about its effects during conversations with more peo-
ple. How should robots orient themselves with respect to a
group during a conversation? At first glance, one may think
that a robot should mimic human behavior and orient its
body towards the middle of the group (Fig. 1(b)). This ap-
proach was previously proposed by Althaus and colleagues
[5] and was associated with more positive perceptions of the
behavior of a telepresence robot [69]. However, this strat-
egy is not the only reasonable one for mobile, low degree-of-
freedom (DoF) robots. For robots with a fixed head, such
as FROG [18], SPENCER [64], or the CoBots [68], it may
be better to orient towards the focus of attention of the con-
versation, e.g., the speaker, as illustrated in Fig. 1(c). This
behavior could convey attentiveness to the interaction and
make users perceive the robot as more active or responsive.

http://dx.doi.org/10.1145/2909824.3020207


To further our understanding of robot positioning during
group conversations, we conducted an experiment in which
a mobile robot interacted with small groups of people (Fig.
1(d)) while we manipulated its orientation and gaze behav-
iors. Gaze was manipulated because the robot that we used
has a fixed head, but the direction of its eyes could still com-
municate mental states and attention [7, 2]. We expected
gaze to affect the perception of the orientation of the robot.

Another contribution of this paper is a new protocol for
studying group interactions in the context of HRI. In this
protocol, the robot asks the participants to help it solve a
problem in a brainstorming session in the laboratory. Even
though this is not a public setting, our design makes the
interaction naturalistic. Participants are free to move in
the environment as desired and, periodically, are induced
to leave the robot’s conversational group to document their
ideas. This dynamic creates a variety of group formations
on a frequent basis, thereby generating numerous instances
for studying multi-party interactions. For example, groups
with one to four people emerged during our experiment as a
result of the flow of the activity. In addition, the proposed
brainstorming protocol does not require us to provide the
participants with specific instructions on their roles. This
property leads to increased interaction time during experi-
ments in contrast to a prior role-playing game protocol that
was used to study group interactions with a social robot [65].

The body and gaze behaviors of the robot were controlled
automatically by a multi-modal perception system during
most of the the brainstorming activity. This system relied
on several off-the-shelf sensors and data fusion techniques to
(1) track the users and the robot, (2) detect conversational
groups by reasoning about spatial behavior, and (3) detect
the current speaker in the environment. Although the core
components of this system were developed previously, their
integration is valuable. First, it allowed us to run parts
of the experiment in an automated fashion. Second, it al-
lowed us to collect a corpus of human spatial behavior with
and around our robot, which we are using to develop more
complex perception capabilities and evaluate group detec-
tion methods. We describe our system and its limitations
for future replication and adaptation efforts.

2. RELATED WORK
Proxemics. Many factors can influence how people use

physical spaces during interactions [22]. In HRI, these fac-
tors include social norms, familiarity among the interac-
tants, users’ personal characteristics, mutual gaze, a robot’s
voice and height, and the direction from which a robot ap-
proaches users [41, 61, 70, 73, 72, 71].

Proxemics have been used as a cue to estimate users’ en-
gagement level with robots [39, 40, 51, 54, 26]. For example,
Michalowski and colleagues [39] proposed an engagement
model based on spatial information and head pose. Satake
and colleagues [51] used motion to estimate if users would
accept interacting with a robot. In this work, we used po-
sition and body orientation features to detect F-formations
[66] and infer who was conversing with our mobile platform.

Initiating interactions. Different strategies and motion
controllers have been developed to appropriately approach
users and initiate interactions [5, 27, 49, 51, 53]. In particu-
lar, the controller of Althaus and colleagues [5] reduced the
speed of the robot as it approached a group of users. This
controller also adjusted the robot’s orientation towards the
middle of the group. In our experiment, a wizard teleoper-
ated our robot at the beginning of the interaction to achieve

a similar result and orient the mobile platform towards the
participants. Once the brainstorming activity started, the
wizard switched to automatic orientation control, as further
explained in Sections 3 and 4.

Robot orientation. The middle orientation behavior
that we studied in our experiment was proposed earlier for
social navigation [5]. Karreman and colleagues [26] imple-
mented this behavior on a museum guide robot that gave
short tours to visitors. Turning the robot towards visitors
led to increased interest in the platform in contrast to turn-
ing towards points of interest, like art pieces. There is also
evidence that suggests that orienting a telepresence robot
towards the center of a group makes people comfortable [69].

Social gaze. There is significant work in social eye gaze
for human-computer and human-robot interaction [50, 2].
Related to our work, Garau and colleagues [20] found that
synchronizing an avatar’s head and eye animations with
turn-taking patterns could improve its communication with
humans in comparison to a random gaze behavior in which
its head and eye animations were unrelated to conversational
flow. As in our experiment, random gaze behaviors were
also used in prior efforts to study robot gaze. For example,
Yoshikawa and colleagues [75] compared a random gaze be-
havior versus three other gaze behaviors on a Robovie-R2
platform. Their experiment suggests that responsive robot
gaze, e.g., gaze that communicates shared attention, induces
stronger feelings of being looked at on users in comparison
to non-responsive gaze. In addition, Skantze and colleagues
[58] studied a random gaze behavior versus a human-inspired
gaze behavior on a Furhat robot. This robot has back-
projected eyes like the platform used in this work.

Other research has focused on analyzing gaze duration and
frequency. For example, prior work [1] suggests that short,
frequent fixations by a robot can give an observer stronger
feelings of being looked at versus longer, less frequent stares.
Also, a robot that looks towards users more often may be
perceived as more extroverted than to one that looks more
towards the task space [6]. Note that gaze can also influ-
ence people’s roles in a conversation with a robot [30, 43]
and their attitudes towards these machines [25]. Some gaze
behaviors may work better than others, depending on the
type of conversation [14].

Sense of groupness. Several efforts within HRI have in-
vestigated how much people perceive themselves as part of
a group [23, 37, 43, 46]. Similar to prior work, we follow the
approach of Mutlu and colleagues [43] to measure interper-
sonal closeness to our robot with the “Inclusion of Other in
Self” (IOS) scale [8]. We use the survey by Williams and col-
leagues [74] to measure feelings of groupness and ostracism.

Multi-modal perception. Our perception system was
inspired by work in multi-modal sensing [32, 10, 28, 56, 57,
63, 11, 44] and is an alternative to other approaches meant
to enable human-robot interactions in controlled settings. In
particular, our system estimates users’ positions and body
orientations by fusing ultra wide-band tracking information
and skeleton data output by a Kinect. Even though prior
work used ultra wide-band localization systems to track peo-
ple [21, 9] or the Kinect to enable interactions [38, 3, 77, 24],
we are the first to fuse these types of data for HRI to the best
of our knowledge. The fusion offers key advantages: oper-
ation beyond the Kinect’s range, better occlusion handling,
and simple user identification.

Our perception system also builds on advances in local-
ization [62] and human spatial analysis [29, 15, 66]. While
recent efforts to detect social interactions based on spatial



behavior have focused on analyzing users only [36, 34, 47],
we opt to jointly reason about the users’ and our robot’s
spatial configurations in a unified perspective.

3. ORIENTATION AND GAZE BEHAVIORS
We studied two orientation and two gaze behaviors dur-

ing group conversations with the furniture platform Chester
[67]. This robot has a differential drive base, a fixed face,
and back-projected eyes, as shown in Fig. 1(d). Even though
the robot’s design led to specific decisions for the orienta-
tion and gaze behaviors, they can be easily adapted to other
mobile platforms with expressive eyes. We detail our imple-
mentation to facilitate future explorations in this direction.

For the following explanations, assume that the robot has
started a conversation and we know its position r = [rx ry]T

and orientation ρ (yaw angle) on the ground. Assume that
we also know the position pi, the lower body orientation,
and the velocity of any person i near the robot, so that we
can detect its conversational group by reasoning about F-
formations (e.g., using [15, 52, 66]). Finally, assume that
we know who is speaking in the robot’s conversation. Data
collection methods are later described in Sec. 3.3.

3.1 Body Orientation Behaviors
For any member i in the robot’s conversation, let ui =

[ui
x ui

y]T = pi − r be the direction from the robot to this

person, and γi = atan2(ui
y, u

i
x) the corresponding angle. We

used this angle to orient the robot as described below.

3.1.1 Middle Orientation Behavior (MO)
The robot oriented towards the middle of its conversa-

tional group G using the mean direction θ̄ of all γi [19]:

θ̄ = atan2
(∑

i∈G

sin(γi),
∑
i∈G

cos(γi)
)

(1)

3.1.2 Attentive Orientation Behavior (AO)
If the robot was speaking, it biased its orientation towards

its addressee; otherwise, it biased its orientation towards the
current speaker in its conversational group. Let γi be the
orientation towards the speaker or the addressee, and θ̄ be
the middle orientation in the group, as in eq. (1). At any
given time, the orientation ρ̂ of the robot was set as follows:

ρ̂ =


θ̄ − τ if minAngDiff(γi, θ̄) < −τ
θ̄ + τ if minAngDiff(γi, θ̄) > τ

γi otherwise

(2)

where minAngDiff returns the signed minimum difference
between two angles, and τ is a parameter that controls how
much the robot rotates away from the middle orientation θ̄
(Fig. 2). In particular, we set τ = 60◦ for our robot so that
it would not turn its back to group members to its side.

If the robot was not addressing anyone and nobody had
spoken for a significant time (10 seconds), the platform’s
orientation was set towards the middle direction as in the
MO behavior. This also happened when the robot conversed
with a single user, given that ρ̂ in eq. (2) became θ̄.

3.2 Gaze Behaviors
We tested simple gaze behaviors to complement the effects

of our orientation manipulation. These behaviors serve as a
baseline for future investigations on the relationship between
body motion and complex gaze patterns, e.g., involving dis-
course structure or fixations on the environment [12, 42].

)

middle direction

addressee/speaker

robot
⌧

✓̄

⇢̂AO direction

Figure 2: Geometric relations for the AO behavior.
The ∧ mark denotes the robot’s front. The middle
direction corresponds to eq. (1) and ρ̂, τ to eq. (2).

Gaze was calibrated using a projective mapping from 3D
world coordinates to 2D pupil positions. The mapping was
used for both pupils of the robot, making their lines of sight
parallel. While this constraint prevented vergence eye move-
ments, it worked well in practice because the robot’s eyes
look cartoonish and have a slight curvature. This design
makes users forgiving of gaze patterns that do not fully
mimic human gaze and induces the Mona Lisa gaze effect
[4]: users perceive mutual gaze more often than intended.

3.2.1 Random Gaze Behavior (RG)
The robot executed several pre-defined eye animations

that helped communicate ideas while it spoke (Fig. 3). For
example, referential gaze was used at times with verbal ut-
terances to convey spatial information. When no pre-defined
animation was scheduled for the eyes, they blinked occasion-
ally or their pupils moved randomly at small intervals.

Figure 3: Left to right: eyes look up and to the right
of the robot, look forward, and squint.

Our specific implementation of eye blinks was inspired by
human blinking activity [16]. The duration of inter-blink in-
tervals followed a normal distribution N (5.2, 32) in seconds.

Gaze shifts were scheduled by sampling time intervals in
seconds from the uniform distribution Unif(1.8, 3). When
the timer triggered and no blink was set to occur, the pupils
moved a small amount horizontally (dx) and vertically (dy),
based on the size of the eyes:

dx = eye width ∗ ε1 and dy = eye height ∗ ε2
with ε1 and ε2 sampled uniformly in a small interval. Any
displacement (dx, dy) that rendered the pupils outside the
limits of the eyes was considered invalid and was re-computed
by sampling new values. Furthermore, we prevented Chester
from fixating significantly downwards, towards the ground,
so that it would not look extremely introverted.

3.2.2 Attentive Gaze Behavior (AG)
The robot used the same blinking pattern and pre-defined

eye animations as in RG. When no animation was scheduled,
the robot attempted to establish mutual gaze with the per-
son who was the focus of attention. That is, the person that
the robot addressed in particular, the current speaker if the
robot was quiet, or anybody who moved with a speed of at
least 0.5 m/s in the group when everybody was silent.



Once the robot gazed towards someone, gaze shifts were
sampled as often as in RG but were biased towards the head
of the focus of attention. If q is the 3D position of the head,
then the new, biased positions for the pupils were set as:

(x,y) = lookAt(q) // pupils position towards q
r ∼ Unif(0, 1)
if r < 0.2 then // add noise 20% of the time

x = x+ eye width ∗ α1 with α1 ∼ N (0, σ2)

y = y + eye height ∗ α2 with α2 ∼ N (0, σ2)

where lookAt returned the 2D location of the pupils that
made the robot look towards the desired direction, and σ
controlled the amount of variation in gaze shifts. After 10
seconds of silence and no significant motion in the group,
gaze shifts continued without the bias as in RG.

3.3 Multi-Modal Perception System
We implemented a real-time system to control the robot’s

orientation and gaze based on human behavior, as well as to
collect data during the experiment. The system required in-
strumenting the environment with ultra wide-band (UWB)
localization beacons1 and a Kinect. Each participant wore
an instrumented baseball cap with two UWB radio beacons
for tracking and identification, as shown in Fig. 1(d). The
robot also wore a cap to make it look like the participants.

3.3.1 System Components
Figure 4 shows the main components of the system. Grey

boxes denote modules that ran on the robot; the rest exe-
cuted on external computers. The boxes with thicker edges
correspond to modules that were in charge of the manipu-
lated behaviors. Note that the robot’s speech was controlled
by a hidden operator, as detailed in Sec. 4.1.

The system processed data as follows. First, the posi-
tion of the UWB beacons carried by the participants was
smoothed with a Kalman filter (“Filter” module in Fig. 4).
The smoothed values were then aggregated to estimate the
position and orientation of each hat (“Hat Pose”module) and
fused with the skeleton output of a Kinect (“User Tracker”
module). This fusion step output estimates of the position
and orientation of each participant, taking advantage of both
sensing modalities. The Kinect reduced localization error,
which ranged up to 30 cm on average for the hats. The UWB

1We used DWUSB sensors by Ciholas, Inc.
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Figure 4: The system used to control the body ori-
entation and gaze of the robot. “UWB” stands for
ultra wide-band and “K2” stands for Kinect v2.

Figure 5: Experiment (left) and outputs of our per-
ception system (right). A Kinect in the left corner of
the room output skeleton data (shown in black near
the participants). Colored markers denote partici-
pants’ pose as output by the “User Tracker” module.
The black lines on the ground connect the estimated
members of the robot’s conversational group.

data provided continuous tracking information throughout
the environment as well as participants’ identities.

While users were localized, the“Robot Localization”mod-
ule estimated Chester’s pose using an on-board laser scan-
ner and a map of the environment [62]. The “Aggregator”
program then grouped all this localization information and
passed it to the “Group Detector” and “Speaker Detector”
modules. The former module reasoned about conversational
groups based on F-formations, as in [66] and illustrated in
Fig. 5. The latter module was in charge of identifying the
current speaker based on the interactants’ positions, sound
detections (output by “K2 Audio”), and information from
Chester’s dialog engine (“Mouth Animation” module). If
Chester’s mouth was moving, the robot was identified as
the current speaker. Otherwise, the speaker was the person
closest to the Kinect’s audio beam (within 1 m) or nobody
when no sound was localized.

Finally, the locations of the participants, the conversa-
tional groups, and the identity of the speaker were sent to the
“Orientation Control” and “Gaze Control” modules. These
programs output motion and gaze commands for the robot.

3.3.2 Limitations
Our system is a practical contribution of this work be-

cause it can enable human-robot interactions with little hu-
man intervention. However, it does not solve all perception
problems in HRI, e.g., because it requires instrumentation
and this may be impossible or undesirable in some cases.

Two types of errors due to shortcomings of the underly-
ing technologies were the main factors that influenced the
system’s performance. First, tracking errors were common
at the edges of the room due to the Kinect’s limited range
and field of view as well as a noticeable bias that affected
UWB localization in these regions. As discussed in Sec. 4.6,
these errors rarely affected group detection and the robot’s
orientation during the experiment because the participants
were usually in the middle of the space. Second, sound local-
ization errors were typically caused by simultaneous speech.
These events were also infrequent in our experiment as in-
teractants respected turn-taking.

http://www.ciholas.com


4. METHOD

4.1 Study Design and Setup
We designed a 2× 2 between-subjects experiment to test

orientation (middle vs. attentive) and gaze (random vs. at-
tentive) behaviors. The experiment followed a Wizard with
Oz arrangement [59] in which the manipulated behaviors
were autonomous, but the sequencing of events within the
study and the robot’s speech were managed by a hidden
operator or “wizard”. In a few instances, the wizard also
re-configured the robot spatially with respect to the partici-
pants, as detailed in Sec. 4.6. The experiment was approved
by our Institutional Review Board.

During the experiment, the robot led and participated in
a brainstorming session with a small group of participants.
Each session was performed under one of four conditions:

MO+RG condition. The robot oriented towards the mid-
dle of its conversational group and randomized its gaze.

AO+RG condition. The robot biased its orientation to-
wards the focus of attention and randomized its gaze.

MO+AG condition. The robot oriented towards the mid-
dle and tried to establish mutual gaze with the person who
was the focus of attention.

AO+AG condition. The robot biased its orientation and
gaze towards the focus of attention.

Given these conditions, we hypothesized that:

H1. The gaze behaviors would affect the perception of the
robot’s motion, with AG increasing perceived naturalness.

H2. For the AO behavior, participants would find the robot
more attentive and responsive than MO.

H3. The AO behavior would make the participants feel like
the robot was more of a part of their group than MO.

H4. The AO+AG condition would lead to reduced feelings
of ostracism or increased feelings of inclusion compared to
MO+RG.

The experiment was conducted in a room with a free space
of 4.4× 4.4 meters (Fig. 1(d)). A table was placed adjacent
to a wall for the participants to write down the brainstormed
ideas on slips of paper. These slips then had to be deposited
in different boxes in the room, according to the author.

The room was equipped with a UWB sensor network, a
Kinect v2 and four RGB cameras near the ceiling. The UWB
sensors and the Kinect were used to localize the participants,
identify them, and detect speakers, as described in Sec. 3.3.
The cameras recorded the interaction from multiple views
and allowed the wizard to monitor the experiment remotely.

4.2 Participants
We recruited 20 groups (5 per condition) of 3 or 4 people

using a participant pool, word of mouth, and fliers. The par-
ticipants were at least 18 years of age, fluent in English, and
had grown up in the U.S. The last restriction was imposed
to reduce the effects of cultural biases in spatial behavior.

Table 1 shows details of the 69 participants that interacted
with our robot. In general, most participants were university
students, and their average age was 24.8 years old (SE =
1.0). In 7 sessions, two or more participants knew each other.

Before the interaction, the participants indicated how of-
ten they used a computer and their familiarity with robots
on a 7 point Likert responding format (1 being lowest). Most
participants used computers daily (M = 6.97, SE = 0.02) but
were not very familiar with robots (M = 3.38, SE = 0.20).

Table 1: Participant characteristics per condition.
“G”, “F”, “M”, and “P” are used to abbreviate
groups, female, male, and participants, respectively.

Condition #G #F #M #P Age (Std Err)
MO+RG 5 8 10 18 22.2 (0.8)
MO+AG 5 9 9 18 23.5 (0.8)
AO+RG 5 11 5 16 24.4 (1.3)
AO+AG 5 9 8 17 29.3 (3.6)

4.3 Procedure
First, an experimenter gave a colored badge to each partic-

ipant for identification purposes and administered a demo-
graphics survey. She then asked the participants to wear in-
strumented baseball caps with UWB beacons, and explained
that each of them had a box in the room with their same
color identifier. The experimenter introduced the robot,
gave it an instrumented cap to make it look like the par-
ticipants, and stepped away. The robot opened its eyes, and
started a semi-scripted conversation with three phases:

1. Introduction. Chester presented itself to the group. The
robot explained that the laboratory wanted to retire him,
but people might keep him around if they found him useful.
Chester encouraged the participants to think of how it could
help in the lab and explained its sensors and capabilities. To
facilitate brainstorming, the robot provided a first example
and explained how it delivered souvenirs to lab visitors in
the past. Chester then opened the floor to new ideas.

2. Brainstorming. The robot encouraged the group to brain-
storm tasks that it could do in the lab for 6 min. Chester
replied favorably to useful ideas and requested that authors
write them on a slip of paper and deposit the slip in their
corresponding box. The robot also asked for more details or
discouraged unrealistic and complicated tasks. When people
ran out of ideas, Chester provided more suggestions.

3. Closing. Chester asked a participant to count the ideas
in the boxes and write the color of the box on each slip
to help keep track of them. Meanwhile, the robot asked
other people about their favorite ideas and gave his opinion.
Chester thanked everybody for helping and said good-bye.

Finally, the experimenter adminstered a post-test survey,
paid the participants, and debriefed them about the wizard.
During debriefing, the experimenter also explained that the
requests to deposit paper slips on boxes were an excuse to
induce people to leave the robot’s conversation and re-enter
in natural ways. These requests were motivated by our prior
experience, where we found that we had little chance of ob-
serving varied spatial behaviors without a task like this one.

4.4 Dependent Measures
We considered subjective and objective measures. The

post-test survey asked people about their impressions of:

– the robot’s motion and gaze;

– closeness to the robot using the IOS scale [8];

– the robot’s and the participants’ feelings of belongingness
and ostracism in the brainstorming group [74];

– Chester with respect to a set of attributes, e.g., perceived
intelligence, responsiveness, and entertainment value;

– Chester’s ability to lead the brainstorming session and
whether it should be decommissioned; and

– any unusual behavior for the robot [55].



Objective measures included the distance that the partici-
pants kept from the robot, the participants’ membership in
the robot’s conversational group, and the number of paper
slips collected during the brainstorming activity.

4.5 Pilot Sessions
Before starting the experiment, we recruited 35 people to

conduct two types of pilot sessions. First, we ran 3 human-
only sessions to evaluate the dynamics of the brainstorming
activity and collect example tasks for the robot. Second, we
ran 8 human-robot pilot sessions to test the Chester’s dialog
and the manipulated behaviors. During these sessions, we
also simplified the wizard’s teleoperation interface and the
protocol of the experiment to avoid confusing procedures.

We considered studying a random orientation behavior for
our robot as a baseline. However, the pilot sessions quickly
showed that people are highly sensitive to inappropriate or
unexpected orientations. These motions often halted inter-
actions because people did not know how to interpret them.

4.6 Confirmation of Autonomy and Behaviors
The robot moved autonomously for most of the interaction

as defined by the experimental condition. The exceptions
were (1) when the robot started conversing, (2) when it said
good-bye, and (3) during a handful of situations due to tech-
nical difficulties. In the first case, the wizard reconfigured
the robot to show that it could move and tacitly induce an
F-formation. In the second, the wizard moved Chester away
to end the interaction. In the third, the wizard corrected
for slight undesired changes in the robot’s orientation, e.g.,
because of people-tracking failures in our perception system.
During the brainstorming phase – the main part of the ex-
periment – sporadic reconfigurations of this sort happened
in 16 sessions out of 20. In these sessions, total teleopera-
tion time while brainstorming was 9.37 sec on average (SE
= 2.04), which represented only 2.4% of the duration of this
phase (M = 383.53 sec, SE = 5.43, N = 16). REstricted or
REsidual Maximum Likelihood (REML) analyses [45, 60] on
the number of teleoperation events and teleoperation time
while brainstorming showed no significant differences for the
effects of Orientation (Attentive, Middle) and Gaze (Atten-
tive, Random).

To confirm that the robot oriented as expected during the
brainstorming phase, two coders annotated the members of
the robot’s conversation.2 Using this ground truth and the
logs from our perception system, we then computed the ideal
middle orientation of the robot at 1 Hz. As expected, the
absolute angular difference between the robot’s orientation
and this ideal middle direction was smaller for MO (M =
7.04◦, SE = 0.12, N = 3686) than for AO (M = 14.33◦, SE
= 0.27, N = 3644). Note that these differences were induced
in part by the robot’s motion planner and a small bias in
the robot’s orientation towards the table in the room. The
planner prevented Chester from jittering by ignoring turns
of 5◦ or less. The bias (1.63◦ on average) was generated by
occasional user tracking errors that made Chester believe
that some people were still conversing with it when they left
to write paper slips. Interestingly, the motion induced by
these errors was interpreted as though Chester was checking
that participants were following its instructions.

We transcribed when people spoke in the robot’s group
and its specific addressees in 2 sessions per condition. We

2Inter-coder reliability was computed for 4 sessions (20%).
Two annotations were misaligned; Cohen’s kappa for the
other 75 annotations was 1.0, indicating perfect reliability.

then used the data to check when Chester adjusted its orien-
tation towards these people. As expected, the robot turned
more towards these foci of attention with AO (47% of 280
annotated events) than with MO (25% of 319). The robot
did not move in many cases because the target was within 5◦

of its orientation (22% of the events for AO; 21% for MO).
We also inspected Chester’s eye fixations during the ex-

periment to confirm that the gaze behaviors worked as ex-
pected. As can be seen in Fig. 6, the positions of the pupils
were less concentrated for RG than for AG because the robot
tried to establish mutual gaze with the focus of attention in
the latter case. Also, the robot had a tendency to look
forward because several of our pre-defined eye animations
positioned the pupils towards the middle of the eyes.

Random Gaze Attentive Gaze

Figure 6: Chester’s eye fixations in the 20 sessions
of the experiment.

5. RESULTS
We first analyse survey results and the spatial behavior

of the participants around our robot. Then, we discuss the
implications of our findings in terms of our hypotheses.

5.1 Survey Results
We ran REML analyses to evaluate survey responses. Un-

less noted, analyses used Participant as a random effect
nested by Session, and Orientation (Attentive, Middle), Gaze
(Attentive, Random), and Gender as main effects. Student’s
t-tests and Tukey HSD tests (with significance thresholds of
p < 0.05) were used for post-hoc analyses of two sample and
multiple pair-wise comparisons, respectively. Ratings were
on 7-point Likert responding formats and responses were
grouped only when Cronbach’s alpha was above 0.7.

Robot’s gaze. In general, Chester’s gaze looked natural to
the participants (M = 4.93, SE = 0.16). They did not feel
like Chester was staring at them (M = 2.91, SE = 0.17) nor
avoiding looking at them (M = 2.01, SE = 0.12). These
results had no significant main effects.

The robot’s orientation led to significant differences on
how much the participants felt that Chester looked at them
(F[1, 68] = 7.47, p < 0.01). As shown in Fig. 7, the AO
behavior (M = 4.72, SE = 0.18) had significantly higher
ratings than the MO behavior (M = 4.11, SE = 0.15) in
this respect. The fact that the results were not significantly
different for Gaze may be explained by the Mona Lisa gaze
effect and the tendency of the robot to look forward.

Robot’s motion. Gaze had a significant effect on the rat-
ings for “Chester’s motion looked natural during the inter-
action” (F[1, 68] = 4.08, p = 0.05). As shown in Fig. 8,
the AG behavior elicited significantly higher agreement with
the statement relative to RG (M = 4.71, SE = 0.28 vs. M
= 4.00, SE = 0.23). No significant differences were found for
“Chester’s motion was distracting” (M = 2.03, SE = 0.13),
“I felt confident that the robot was not going to hit me” (M
= 6.42, SE = 0.18), nor“Chester’s motion made me anxious”
(M = 1.57, SE = 0.12).
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Figure 7: Ratings for how much the participants felt
that Chester looked at them. (**) denotes p < 0.01.
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Figure 8: Ratings for how natural the robot’s motion
looked based on its gaze. (*) denotes p < 0.05.

Robot’s attentiveness. Participants rated how much they
thought that Chester paid attention to what they said (M
= 5.33, SE = 0.16) and to what the other participants said
(M = 5.48, SE = 0.14). A REML analysis with Partici-
pant as random effect nested by Session, and Orientation,
Gaze, Gender, and Speaker (Me, Others) as main effects
showed significant differences for the interaction between
Orientation and Gender only (F[3, 66] = 4.94, p = 0.03).
The post-hoc test then showed no significant pair-wise dif-
ferences, but the tendency was interesting: male participants
thought that the robot paid more attention with AO than
with MO (M = 5.73, SE = 0.20 vs. M = 4.92, SE = 0.25).

Inclusion and ostracism: IOS scale [8] ratings indicated
that the participants did not feel close to Chester (M =
2.57, SE = 0.14). However, they thought that both they (M
= 5.03, SE = 0.17) and the robot (M = 5.33, SE = 0.19)
belonged to the brainstorming group.

We found low perceptions of being ignored or excluded by
the robot (M = 1.57, SE = 0.12) or the other participants
(M = 1.42, SE = 0.09). REML analyses for these results
resulted in no significant differences, but Orientation was
close for the former (p = 0.06). The trend suggested that
MO could lead to higher feelings of ostracism from the robot
than AO (M = 1.77, SE = 0.17 vs. M = 1.33, SE = 0.14).

Other perceptions of the robot. The participants gen-
erally thought that Chester was a good leader for the brain-
storming activity (M = 5.00, SE = 0.17) and had signifi-
cantly different impressions of how much the robot and the
other participants liked them (F[1, 68] = 4.98, p = 0.03).
In particular, the participants thought that the robot liked
them significantly more than did the other people in the ex-
periment (M = 5.16, SE = 0.14 vs. M = 4.93, SE = 0.13).

Chester was not perceived as anti-social (M = 1.58, SE
= 0.09). The only trend in this respect (p = 0.06) suggested
that RG could make the robot look more anti-social than
AG (M = 1.76, SE = 0.16 vs. M = 1.4, SE = 0.09).

Table 2 shows a factor analysis on a series of additional
attributes for the robot. Factor I was associated with in-
teractivity, Factor II with competence, and Factor III with

Table 2: Ratings for the factors resulting from fac-
tor analysis. Machine-like was reversed (R) for the
analysis and for computing Chronbach’s alpha.

Attribute Mean (SE) Cronbach’s α Factor
Responsive

5.33 (0.11) 0.786 IInteractive
Useful

4.62 (0.13) 0.791 IIKnowledgeable
Intelligent
Competent

Entertaining
5.47 (0.15) 0.846 IIIFunny

Lifelike 4.14 (0.18) 0.623 -
Machine-like (R) 4.20 (0.15)

entertainment. These factors explained 18.3%, 26.4%, and
20.3% of the variance, respectively. Their ratings were pos-
itive in general with no significant main effects of condition.

Only 8 participants of 69 indicated that Chester should
be decommissioned in the post-survey. Their responses were
typically associated with the robot’s usefulness (e.g., “I can’t
see a practical use for it, but the robot was entertaining”).

Interaction: In general, the interaction with Chester was
enjoyable (M = 5.45, SE = 0.14). Desire to brainstorm for
longer was correlated with the number of paper slips written
per session (r(67) = 0.48, p< 0.01), which tended to be just
a few, or ten or more. This result motivated a REML anal-
ysis on the ratings for wanting to brainstorm for longer with
Slip Count (1 if ten or more slips, 0 otherwise), Orientation,
Gaze, and Gender as main effects, and Participant as ran-
dom effect within Session. Not surprisingly, Slip Count had
a significant effect (F[1, 68] = 15.09, p< 0.01). Ratings in
sessions with many slips were significantly higher than the
rest (M = 4.65, SE = 0.28 vs. M = 3.00, SE = 0.24). Also,
the interaction between Gender and Slip Count was signifi-
cant (F[3, 66] = 6.78, p= 0.01). Male participants wanted to
brainstorm significantly more when there were at least ten
slips (M = 5.27, SE = 0.37) than in other cases (M = 2.53,
SE = 0.30). Female ratings were more uniform and neutral.

Note that the robot did not use a balancing criteria to
ask people for ideas during the brainstorming activity. A
REML analysis on the number of ideas proposed by the par-
ticipants did not result in any significant differences for the
main effects of Orientation, Gaze, and Gender, suggesting
that this aspect of the protocol did not generate a confound.
Moreover, all but one of the 69 participants proposed ideas.
The only person that stayed quiet during the brainstorming
phase took part in the activity towards the end, when the
robot asked him to count the number of slips in the boxes.

5.2 Human Spatial Behavior
We analyzed proxemics during the brainstorming phase,

when the participants often moved to write ideas at the ta-
ble. For the analyses, we used the spatial information output
by our perception system (sampled at 1Hz) and the group
membership annotations described in Sec. 4.6.

When the participants conversed with the robot in the
brainstorming phase, their average separation from Chester
was typical of social encounters (M = 2.15m, SE = 0.04,
N = 69) [22]. Because people often adjusted their position
as they became familiar with the robot and the activity, we
decided to further analyze proxemics during the last minute
of the brainstorming part of the experiment. We performed
a REML analysis on the distance between the robot and



the participants during this period, considering Orientation,
Gaze, and Gender as main effects and Participant as random
effect nested by Session. Gaze was significant (F[1, 68] =
5.67, p = 0.02): participants stood significantly farther away
from the robot with RG (M = 2.29, SE=0.05) than with AG
(M = 2.09, SE = 0.06). The interaction between Gaze and
Orientation was also significant (F[3, 66] = 4.27, p = 0.04).
The members of the robot’s group were significantly farther
away from it with MO+RG than with MO+AG (M = 2.40,
SE=0.07 vs. M = 2.03, SE=0.10), as shown in Fig. 9.
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Figure 9: Distance to Chester during the last minute
of brainstorming. (**) denotes p < 0.01.

Throughout the experiment, we observed qualitatively cir-
cular or side by side spatial arrangements. In a few cases in
which the robot engaged in a dyadic interaction and it was
not oriented as expected, participants proactively changed
their positions to stand in front of it. These efforts to es-
tablish appropriate spatial arrangements suggest that peo-
ple may be willing to collaborate with robots to establish
F-formations and adapt to unforeseen circumstances.

5.3 Hypotheses Support and Implications
Attentive Gaze made the participants think that Chester’s

motion looked more natural in comparison to Random Gaze.
This result supported our first hypothesis (H1) and is related
to prior findings on the influence of gaze on the perception
of a robot’s head motion [35]. Furthermore, the orientation
behaviors also affected the perception of the robot’s gaze.
With Attentive Orientation, the participants perceived that
the robot looked at them more. These outcomes suggest
that robot gaze and body motion should be designed and
controlled jointly, rather than independently of each other.

We expected the Attentive Orientation behavior to make
the robot seem more attentive and responsive than the Mid-
dle Orientation behavior (H2). While we did not find that
the robot’s orientation altered how responsive it looked, the
participants thought that the robot gazed at them more with
AO than with MO, as mentioned before. There was also a
trend that suggested that male participants thought that
the robot paid more attention to what people said with AO.

Opinions on how close the participants felt to the robot
and whether they perceived it as part of their group were
not significantly affected by the orientation behaviors, as
hypothesized in H3. Interestingly, the distance between
the participants and the robot varied significantly with MO
based on the robot’s gaze, but did not vary as much with AO.
This finding might indicate more subtle effects of the ma-
nipulation than can be gleaned from questionnaires. Also,
the lack of support opens up possibilities for developing more
complex orientation behaviors and fulfilling other non-social
tasks during multi-party interactions. Given that both MO
and AO were acceptable and did not affect the perception

that the robot was part of the group, both behaviors could
be used by robots depending on other factors besides the
interaction. For example, robots could switch between MO
and AO to reduce uncertainty about the environment.

In terms of H4, the AO+AG condition did not reduce
feelings of ostracism or increase feelings of inclusion relative
to MO+RG. Nonetheless, there was a trend that suggested
that MO could lead to higher feelings of ostracism than AO.
This finding should be explored further in future research.

Finally, we learned an important lesson from the pilot
sessions: people are sensitive to inappropriate or unexpected
robot orientations. If users do not understand why a robot
moves, interactions can easily be disrupted. This outcome is
related to prior work on legible and predictable motion [17].

6. DISCUSSION
Limitations. Our work was limited in several ways.

First, Chester’s dialog was scripted and, thus, it could not
respond appropriately in all circumstances. Second, the
physical appearance and capabilities of our robot could have
influenced our results and biased some aspects of the design
of the behaviors under consideration. For example, the dif-
ferential drive base of the robot constrained the complexity
of its spatial behavior and, in turn, this could have affected
the perception of its motion. Third, the perception system
that we implemented for the experiment required instrumen-
tation. While this system enabled autonomous robot be-
haviors, we are now interested in shifting towards on-board
computation. This includes improving robots’ capabilities so
that they can reason about social contexts using on-board
sensors only and, therefore, interact more casually.

Methodology. Overall, the perception of the brainstorm-
ing activity used in the experiment was positive. The pro-
tocol successfully created opportunities for changes in con-
versation group size, which allowed us to study the behav-
iors under consideration in different social contexts. In the
future, this protocol could be used to study turn-taking pat-
terns and collaboration in HRI. Similar to social games [65],
brainstorming activities are customizable (e.g., the topic of
the conversation can be easily adapted) and can be con-
ducted with groups of strangers. In contrast, brainstorming
sessions are less adversarial and do not require teaching very
specific instructions.

Findings. The gaze of the robot affected the participants’
perception of its motion and its motion affected the percep-
tion of its gaze. This dependency implies that robots should
reason about and control their gaze and body motion jointly.
Furthermore, some trends implied that the Attentive Orien-
tation could be preferred over the Middle Orientation (e.g.,
AO could make the robot look more attentive and less anti-
social). However, these behaviors led to similar feelings of
inclusion and belonging to the group, suggesting that both
AO and MO could be used as primitives for more complex
orientation behaviors.

The implications of these findings are particularly impor-
tant for mobile and low DoF robots, like ours, that engage in
multi-party interactions, e.g., during social gatherings, or as
they travel in human environments. In these circumstances,
appropriate orientation and gaze behaviors can lead to more
effective human-robot communication and user adoption.
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