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Abstract— Navigation systems have been widely used in 

outdoor environments, but indoor navigation systems are still in 

early development stages. In this paper, we introduced an 

augmented reality-based indoor navigation application to assist 

people navigate in indoor environments. The application can be 

implemented on electronic devices such as a smartphone or a 

head-mounted device. In particular, we examined Google Glass 

as a wearable head-mounted device in comparison to handheld 

navigation aids including a smartphone and a paper map. We 

conducted both a technical assessment study and a human factors 

study. The technical assessment established the feasibility and 

reliability of the system. The human factors study evaluated 

human-machine system performance measures including 

perceived accuracy, navigation time, subjective comfort, 

subjective workload, and route memory retention. The results 

showed that the wearable device was perceived to be more 

accurate, but other performance and workload results indicated 

that the wearable device was not significantly different from the 

handheld smartphone. We also found that both digital navigation 

aids were better than the paper map in terms of shorter 

navigation time and lower workload, but digital navigation aids 

resulted in worse route retention. These results could provide 

empirical evidence supporting future designs of indoor 

navigation systems. Implications and future research were also 

discussed. 

Index Terms—Head-Mounted Display, Augmented Reality, 

Indoor Localization and Navigation, Markerless Tracking, 3D 

Environment Scanning 

I. INTRODUCTION

A. Overview

AVIGATION is an area that has demonstrated successful

human-machine system integration. Modern navigation

systems use electronic devices to determine user's location, 

find appropriate routes, and in some cases also autonomously 

supervise vehicles to the destination. Currently, most 

navigation systems use satellite signals from Global 

Positioning System (GPS), which works in outdoor 

environments but has difficulty indoors due to reduced signal 

strength. Alternative technologies such as Wi-Fi-based and 

image-based methods have been proposed for indoor 

navigation; however, a definite solution for the industry has 

not been established. As the prevalence of smart mobile 

devices and location-aware applications [1], [2], indoor 

navigation systems become highly valuable for both personal 

use and applications in many industries [3] such as retail, 

entertainment, healthcare, and manufacturing [2].  

On the machine side of indoor navigation systems, the most 

important goal is to achieve accurate localization. Compared 

with outdoor cases, indoor navigation faces a lot of technical 

challenges such as Non‐Line‐of‐Sight (NLoS) conditions, high 

attenuation and signal scattering, greater concentration of 

physical impediments, transitory environment changes, and 

higher demand for accuracy. To address these challenges, 

different technologies have been introduced with various 

levels of accuracy, cost, and scalability. In order to find a 

suitable navigation technology for a particular application, 

designers need to align the performance parameters to the 

requirements of the users [4]. 

On the human side of indoor navigation systems, few 

studies have examined the human factors and usability issues. 

Part of the reason is that the technology itself is still being 

developed. In contrast, human factors regarding outdoor 

navigation devices and interfaces have been investigated in 

many previous studies. However, since the technologies (such 

as sensors) used in indoor navigation devices are very 

different and currently less reliable than outdoor navigation 

devices [5], findings pertaining to outdoor navigation cannot 

be directly applied to indoor environments. As a result, there 

is a strong need to test and evaluate the human factors of 

indoor navigation technologies and devices [6].  

The focus of the current study is on Head-Mounted Display 

(HMD) and augmented reality (AR) interfaces. Wearable 

devices such as HMDs have been extensively investigated in 

research laboratories, and they now have a rapidly growing 

global market [7]. HMDs can be worn on the head as a 

spectacle or as a part of a helmet. They essentially contain a 

display optic unit in front of one (monocular HMD) or both 

eyes (binocular HMD) [8]. Some HMDs only show computer-

generated virtual scenarios, whereas other HMDs can 

superimpose images on real-world views or camera feed. 

Systems combining HMDs and head movement tracking 

technologies could be highly valuable for navigation 

applications [3][4], because such technologies can directly 

show the route in front of the user's eyes and allow hands to 

perform other activities. Previous studies using HMDs 

[9][10][11][12] were often conducted in controlled laboratory 
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environments [13] due to the large size of the devices and their 

wired connections. Recently, however, companies such as 

Google and Microsoft have released their prototype versions 

of HMDs [7], which allow researchers to conduct more 

practical studies in natural environments. In an HMD, sensor 

data are utilized to automatically track head orientation and 

position, whereas with a handheld device, users need to hold 

the device with particular orientation and position for proper 

navigation view. Therefore a handheld device entails more 

cognitive and physical demands. We therefore believe that 

there is a strong need to conduct comparative studies on 

HMDs and hand-held devices in order to investigate the 

systems from cognitive ergonomics and human performance 

standpoints, identifying best practices of interface designs for 

indoor navigation applications; because most previous studies 

related to indoor navigation have focused on analyzing or 

improving localization techniques rather than human factors 

issues such as workload, comfort, and memory retention [14].  

An imperative aspect of an indoor navigation system is the 

user interface design. With the traditional interface used in 

most electronic navigation systems, users had to mentally 

match the directions shown in the display to directions in the 

real world. With AR, this mental effort is reduced, because an 

AR interface can directly superimpose directions on a real-

world view, therefore making the directions easier to perceive 

[15][11][12]. Many AR-based applications have been 

developed for a wide range of work domains including 

healthcare, defense, intelligence, and transportation [11]. AR 

interfaces for indoor navigation have been implemented on 

handheld devices and evaluated in previous studies [14][16]. 

These studies found that AR could support accurate 

localization and improved user experience [17]; however, for 

handheld devices, users need to hold the devices in an 

appropriate manner (specific orientation and position) for the 

applications to work properly [16]. This requirement may 

influence usability, navigation accuracy, and user satisfaction.  

B. Research Questions

The overall research focus of the current study and our

previous work [18][19] was on the design, development, and 

evaluation of an advanced and intuitive indoor navigation 

system. We concentrated our efforts towards developing a 

workable prototype, which could be used to investigate 

complexities confronting both the human and machine sides of 

indoor navigation research. The motivation for this research 

was to analyze whether it was possible to build an AR-based 

indoor navigation solution that could be implemented on both 

wearable devices (HMDs) and traditional hand-held cell 

phones. We were also interested in figuring out whether it was 

possible to achieve the above AR solution using methods that 

did not require physical infrastructure installation during pre-

deployment stage (e.g. Bluetooth beacons, Wi-Fi routers, and 

fiducial markers). These initial motivations led us to shortlist 

and then further investigate the following research questions: 

1) Can the AR-based indoor navigation solution pass

technical assessments to ensure that it is workable

and does not cause much glitches and fluctuations

during usual walking scenarios?

2) Will the implementation on a wearable device result

in better performance, lower workload, and better

route retention than the hand-held implementation

and paper maps in an indoor navigation task?

C. Contributions

The technical solution developed in the current study was a

novel design of indoor navigation systems that utilized 

advanced feature tracking and augmented reality approaches 

towards navigation. The system used a pre-scanned 3D map to 

track environmental features. These features contained 

directional information so that instructions could be 

superimposed on the live visual feed at appropriate places. 

During navigation, directional information was presented to 

the user via both the visual channel (arrow and icons) and the 

auditory channel (speeches). 

After developing the technical solution, we 

comprehensively tested the application in two studies, a 

technical assessment study and a human factors experiment. 

The technical assessment focused on the efficiency and 

feasibility of the technology in normal and fast walking 

scenarios. A real office environment was used to test the 

feature tracking technology. 

The same prototype was then deployed on both a handheld 

device (Samsung Galaxy S4) and a wearable device (Google 

Glass). The human factors experiment focused on perceived 

accuracy, comfort, subjective workload, efficiency (traversal 

time), and route retention error. Specifically, by analyzing the 

data from the user study, we examined the AR indoor 

navigation prototype implemented on a wearable device vs. a 

handheld device, with a paper map as a baseline in 

comparison. The test of route retention was important because 

it reflected the extent to which users overly relied on the 

navigational aids. It could also reflect the performance of how 

users would act if the assistance devices were removed. It is 

necessary to consider such situations, especially for users in 

extreme environment such as firefighting and combating. 

Previous studies have identified some negative effects of too 

much navigational aid on route retention [20]. Therefore, route 

retention error was included in the current study. 

II. BACKGROUND OF TECHNOLOGY 

Technologies used for indoor positioning can be generally 

categorized into two groups, wireless transmission methods 

and computer vision methods. Wireless transmission methods 

use technologies such as Ultra-wide Band (UWB), Wireless 

Local Area Networks (WLAN), and Radio Frequency 

Identification (RFID) to localize a device. These technologies 

often require physical infrastructures, such as Wi-Fi routers 

and Bluetooth beacons, to be deployed and installed in the 

indoor environment [4]. Most of these solutions are not very 

accurate and contain substantial localization errors, though 

these errors could be reduced by incorporating inertial sensor 

based positioning approaches and probabilistic techniques 

such as particle filtering [21]. Some technology solutions such 

as Bluetooth and infrared methods also have high latency 

during the detection phase [22]. Although these technologies 

are popular localization solutions, they have difficulties in 

estimating the user’s orientation, and therefore are not ideal 
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for AR applications [23]. In contrast, computer vision 

techniques are more suitable for AR-based applications, and 

previous studies have found computer vision technologies to 

be more accurate in comparison to Wi-Fi based fingerprinting 

[22].  

Many techniques have been developed to provide 

localization and navigation using computer vision. SLAM 

(Simultaneous Localization and Mapping) is one popular 

technique that stemmed out of the robotics community for 

autonomous vehicles [24]. The SLAM mapping process 

attempts to obtain spatial data (e.g., Received Signal Strength 

and 3D Point Clouds) of the environment in order to build a 

global reference map while simultaneously tracking the 

position of the subject [25]. There are many different SLAM 

algorithms that pertain to different technologies such as Wi-Fi, 

Bluetooth, feature tracking, and image recognition [24][25]. 

All these data types may be utilized for SLAM. However, the 

focus of the current study is on navigation situations such as in 

hospitals and office buildings where environment mapping can 

be done in advance. As a result, we did not use SLAM 

methods. Instead, the 3D maps were built offline before the 

navigation tasks. 

A commonly studied vision-based indoor positioning 

approach involves image recognition of the real environment 

through live camera feed. These images are referenced against 

a pre-collected sequential database of orthographic images of 

the same environment. The pre-collected images are annotated 

with their locations, and the inertial sensors of the device can 

help deliver orientation [26]. This technique can therefore be 

used to deliver successful AR-based directional instructions as 

well as user localization. An issue with this technique, 

however, is that it requires extensive computational power 

because a large database of images is being utilized, which 

may cause delays during navigation [13].  

Another computer vision based approach, widely studied 

before [27][28][15][10][13][11], uses physical markers for 

optical tracking. Physical markers such as ID markers, 

barcodes, and QR (Quick Response) codes use fiducial 

tracking [29] for detection. These markers are easily 

recognizable due to their unique geometric shape and/or high 

contrast. Other physical markers such as picture markers need 

to have enough unique visual contents to be distinctly 

recognizable. Physical markers often need to be positioned 

strategically to cover the entire indoor environment. In some 

cases, distinct features within the environment such as 

furniture and signs could also be used as picture markers. An 

issue with most physical markers is that they have to be 

physically placed in the environment so that they are all 

visible during navigation. For vision-based localization 

methods in general, there is a risk that the visual scenes might 

be changed, which could impair navigation performance [30]. 

Recent studies have also examined 3D markerless tracking 

approaches as an advanced form of optical tracking [30]. 3D 

maps are created by scanning the area of interest. Once 

adequate visual information of trackables (i.e., 3D point 

clouds at different camera angles) is collected, they could be 

used for AR information overlay. This approach is not very 

computationally exhaustive for mobile devices and also has 

some degree of resilience against changes in the environment. 

Identifying distinct point cloud patterns in an indoor area is 

easier than identifying a specific picture marker. A picture 

marker is difficult to see clearly from farther away. In 

contrast, point cloud patterns can cover a large area and are 

easier to detect from relatively farther distances. Directional 

information can then be overlaid on the trackables using AR 

technologies, which can produce a very accurate navigational 

experience. Therefore in the current study, we utilized 3D 

point cloud tracking technology on a wearable head-mounted 

display with an augmented reality interface to assist users in 

indoor navigation.      

III. PROPOSED SYSTEM 

A. System Design  

The major function of the system is to assist people 

navigate in indoor environments using environment tracking 

technology and augmented reality instructions (both visual and 

auditory). The system design is developed to achieve optimal 

performance for a mobile device or a head-mounted display. 

The head-mounted display used is Google Glass. It is suitable 

for the augmented reality application in this study because it 

has sensors (gyroscope, accelerometer, and magnetometer) 

that can facilitate the identification of device orientation. 

Algorithms based on sensor readings can help maintain the 

required position for the visual overlay to be displayed 

properly. This delivers a very rich experience where the 

virtual contents can be seamlessly integrated with the real 

environment. Developing applications on Google Glass is 

straightforward as Glass Development Kit (GDK) is an add-on 

to the Android SDK; thus the Android platform is used. The 

development of 3D point cloud localization requires a pre-

deployment stage, where the indoor environment has to be 3D 

scanned. We developed our indoor navigation application 

using Metaio SDK [31] that provides a multilayered 

environment to build AR applications on Android platform. 

B. System Overview 

The pre-deployment data were collected and configured in 

Metaio SDK. The scanned environment that consists of visual 

features (3D point clouds) is stored as trackables. In a 

database, these trackables are associated with their 

corresponding locations and navigation related information, 

which can be superimposed on visual feed during the 

navigation aid process. The camera and inertial sensors of the 

device are used to track the 3D point clouds and device 

orientation. Based on the trackables identified from the camera 

feed, the current location and orientation of the user are 

determined. Then the route is calculated. The potential routes 

in this study, supplemented with directional instructions in a 

chronological order, are pre-stored in the application. The 

routes covered a floor of a mid-size office building. We kept 

the routes within a manageable size because the wearable 

device (Google Glass) has limited battery resources. The 

application presents AR-based navigation instructions 

including both visual and auditory cues, leading the user to the 

destination. As the user moves, location and navigation aids 

are updated in real time. Using gravity measurement from 

inertial sensors for pose estimation, the application positions 

the visual instructions at suitable screen locations, preventing 
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any incongruity that could create confusion between 

augmented and real world environments. 

C. 3D Environment Scanning 

The location chosen for the experiment was the Games 

Institute at University of Waterloo. Nine different areas on 

each route were scanned using Metaio Toolbox [32] to 

develop the environment map. Crucial objects were shortlisted 

for potential tracking. We did not intend to scan the entire 

environment because that would have created a lot of data to 

process, which would have been highly strenuous on the 

battery of Google Glass. We established that the minimum 

area to be scanned would be 2 m in length so that trackables 

from far away could also be easily detected during the 

navigation aid process. This design choice would ensure that 

no discrepancy occurs when AR-based positional information 

is overlaid. Although all distinguishable surfaces within the 

environment were taken into consideration, highly textured 

surfaces were preferred in order to maximize the number of 

visual features (3D point clouds) within a scanned area. 

Environmental objects such as tables, chairs, bulletin boards, 

and signs were scanned from different angles. We also 

established that the minimum number of features to be 

scanned within an area would be 1500 so that the environment 

map could get adequately populated with trackables. Areas 

where a potential turn was expected were more 

comprehensively scanned for higher accuracy. All areas, once 

scanned with trackables, were gravity-aligned using the 

inertial sensors of the device. The process concluded once 

sufficient features on a route had been scanned. 

The number of points within the 3D point clouds that were 

scanned at each location mainly affects how easy it is to 

identify the current location seen by the camera. In the 

extreme case, if there are too few points, the algorithm will not 

be able to distinguish between similar locations; therefore the 

system will fail to provide any aid. If there are enough points 

but they are scattered around, the user will need to scan 

around the location in order to see enough points for location 

recognition. When there is a large number of points at the 

location, recognizing it will take a shorter time because it does 

not require the user to scan around the scene. Finally, after the 

points reaching a certain number, further adding more would 

not help because location recognition has reached its minimal 

time duration. Since the focus of the current study is not on 

recognition algorithms, we did not test the optimal number of 

points at each location. In general, we expect that reducing the 

number to 500 or below will significantly decrease 

performance. Adding more points to the current level will not 

increase performance. Regarding battery energy consumption, 

the difference between processing more or fewer points is very 

minimal; the major energy consumption comes from the 

camera and the display. 

D. Information Overlay and Tracking 

After the routes were fully scanned, the images were 

exported to Metaio SDK for AR information overlay. The 3D 

scans of all areas were placed in a sequential order to develop 

a movie-like timeline progressing from the start to the end of 

each route. The next step is to add directional instructions on 

the trackables (e.g., shown in Figure 1). Three forms of 

assistive information were overlaid on the scanned areas. 

Visual arrows were the first information added. The arrows 

were superimposed as augmented information on the camera 

feed, which was then shown to the user via the display devices 

(for both smartphone and Glass cases). In the Glass condition, 

it was not implemented as a see-through display. We used 

giant, glossy, and green-colored arrows in order to achieve 

high visual salience on small displays such as mobile phones 

and Google Glass. Three forms of auditory instructions—“turn 

right, go straight, and turn left”—were also added to the 

scenario on appropriate places. Finally, text-based visual 

instructions (same contents as the auditory instructions) was 

also superimposed on the trackables, providing additional 

assistance. Other forms of augmentation, such as haptics that 

could better support people with either hearing or vision 

impairments, could also be considered in the future; however, 

the current study was geared towards the normal population. 

The trackables were properly translated, rotated, and scaled to 

ensure that AR information was correctly positioned. 

 

 
 

Fig. 1.  Information overlaid to the scanned 3D point clouds of different areas 
within the test environment [18]. The point clouds were only displayed in the 

development stage for testing but not shown to the users in the human factors 

experiment. 
 

The design decisions were made following general 

guidelines and previous designs in this research field [14] 

[33]. Based on these studies we concluded that the major 

elements for an AR interface in this application should have 

the following characteristics. 

1) Elements should be easy to discern.  

2) Voice augmentation should be added to complement 

visual instructions.  

3) All major areas should have adequate information to 

prevent navigation errors.  

4) Virtual content should be meaningful, simple, 

commonly used, and context aware.   

5) The most suitable tracking method should be utilized.  

Our application used elements which were easily 

discernible; turn by turn voice augmentation was also added; 

navigation instructions were comprehensively distributed on 

the route; the virtual content such as arrows and audio 

instructions were meaningful, simple, commonly used, and 

context aware; and we utilized 3D point cloud tracking as that 

seemed to be the most appropriate option for indoor 

navigation scenarios.  

When the application was tested on the testing site using 

both Google Glass (HMD) and Samsung Galaxy S4 

(handheld), the interface updated navigational cues in real 

time as the user moved through the areas (Figure 2). The 
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trackables were quickly detected, and the application 

processing was swift.  

 

 
(a) 

 

 

 
 

 
(b) 

 

Fig. 2.  Screenshots of the application interfaces implemented on (a) Samsung 

Galaxy S4 and (b) Google Glass. Visual information aids (arrows and words) 
were superimposed onto the camera feed, which was then shown to the user 

via the display devices of the smartphone and Glass. 

IV. TECHNICAL ASSESSMENT RESULTS AND DISCUSSION 

Technical performance assessment was conducted to 

evaluate the technology in terms of its feasibility and 

efficiency. We carefully measured the time needed for 

successful feature detection, processing of those features, and 

the subsequent display of auditory and visual instructions. 

Since we needed to quantify very short durations of time, a 

separate software program was developed to record important 

time stamps. Feasibility was determined by analyzing the 

application's ability to detect the percentage of features in a 

walking-speed controlled scenario as well as analyzing the 

walking speed threshold. The technical assessment was 

conducted on nine evenly distributed areas of a route. The 

height of users and the height where they held the phone 

camera were not considered as independent variables in this 

study. Participants generally held the phone around the 

shoulder or neck level. Participants' variation in heights also 

represented the same fact from the general user population.  

A critical factor determining localization accuracy is how 

many features (rather than pixels) can be recognized in each 

camera view [34] [35]. Ideally, a considerable number of 

features should be tracked in a minimal amount of time so that 

AR information could be accurately overlaid without any 

noticeable delay. However, there are concerns with specific 

usage scenarios. For example, if a user is walking very fast 

and expected to take a turn, but the system still needs more 

time to identify sufficient features, a delay in information 

delivery could happen, which could negatively affect overall 

performance and user experience. In some possible but rare 

situations, if a user passes a target location way too swiftly, 

there will not be enough time for the camera to adequately 

capture the trackables, preventing the system from working 

properly. We used the percentage of recognized features as the 

measure because it allows results to be compared across 

different locations and camera views. System time responses 

were also measured. 

In the current study, as the first step towards testing AR-

based indoor navigation systems, we extensively scanned the 

testing area with visual features in nine areas that were 

uniformly distributed along the route. All technical 

experimentation was done in these nine areas where each area 

was roughly equal to 2 m in length. For experimental 

purposes, feature detection and AR overlay processes would 

only initiate after the user was physically present in the area. 

A total of four different assessments were conducted on the 

testing route. The assessments were conducted first on Google 

Glass, which is the focus device of this study, and then on a 

smartphone. 

In the first assessment, we wanted to figure out the 

minimum percentage of features that are needed to initiate AR 

overlay processing for the application. In this assessment, the 

user started from a fast walking pace and gradually reduced 

the speed until there was enough time to collect the minimum 

number of features. The first assessment was repeated four 

times, and the results from different repetitions were very 

similar. We programmed a separate internal script that could 

record the number of tracked features. The results showed that 

on average, the minimum feature percentage needed was 

approximately 45%, with some variation across different 

areas. Regarding the corresponding actual number of features, 

that was on average about one feature in each 2.3 degree 

horizontal by 2.3 degree vertical visual field of view. Not all 

directional information was successfully overlaid on the 

trackables but adequate information was conveyed to the user, 

leading the user to the destination successfully. Overall, the 

speed threshold (i.e., the fastest pace that the user can walk 

without causing system localization failures) was found to be 

around 6.4 km/h to 7.6 km/h. Previous studies found that the 

general walking speed is around 3.4 km/h to 5.5 km/h [36], 

which is below the threshold speed. As a result, we could 

expect our system to be feasible for practical use at normal 

walking speed.  

In the second assessment, we wanted to test the feasibility 

of the application in a fast walking scenario. For this 

assessment, our test user maintained an average walking speed 

of 6.4 km/h, which is much faster than the normal walking 

speed (about 30% more). We conducted four trials with this 

speed on the route and found out that the user was spending on 

average 0.7 s per area. Therefore, we wanted to test the 

percentage of features the application could successfully 

detect in 0.7 s. The results indicated that on average 50.6% of 

features were successfully detected, allowing navigation aids 

to be displayed correctly and promptly without any major 

issue. The results validated the application's effectiveness at a 

faster walking pace.  

The third assessment was conducted to figure out the 

average speed and maximum time the application would 

require to work ideally. The ideal condition is when 95% of 

the features are detected at a particular position because 95% 

of features could seamlessly communicate all navigational 

instructions as well as process future instructions. This 

assessment was repeated six times and  the maximum time for 

the system to identify 95% of features was mostly under 1 s at 

all areas  while walking at an average speed around 4.3 km/h 

and nothing going below 3.8 km/h. The average speed of 4.3 

km/h was within the general walking speed range, so it 

validated that this application could operate ideally with 

maximum efficiency at a slower walking pace. In particular, 

this result showed that the user travelled 1.2 m on average 

before the system detected 95% of the features.  
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Analyzing the time needed for each type of AR display was 

also crucial to determine the efficiency of the technology. As 

previously introduced, the two types of navigational assistance 

include visual direction (arrows and texts) and auditory 

direction (speech). We developed a testing program that could 

estimate the time for processing each kind of navigational 

assistance. This assessment was repeated five times and 

overall, the average time for Google Glass to produce audio 

augmentation was 0.18 s, and for visual direction arrows and 

texts, it was 0.14 s. The average distance travelled was less 

than 0.5 m during this time period.  

After examining the application on Google Glass, we also 

wanted to examine the same application's performance on a 

handheld smartphone/cell phone. A Samsung Galaxy S4 cell 

phone running the Android operation system was used in the 

test. Below we listed the specifications of the two devices 

(Table 1). The comparative performance results were listed in 

Table 2, which shows similar results from both devices. 
TABLE I 

HARDWARE SPECIFICATIONS OF THE DEVICES 

Specifications Google Glass Samsung Galaxy S4 

Form-Factor Monocular Slate 

Weight 50g 130 g 

CPU OMAP 4430 SoC, dual-

core 

Soc Exynos 5 Octa 

5410, 1.6 GHz quad-
core Cortex-A15 

Operating 

System 

KitKat for Glass Android 4.2.2 "Jelly 

Bean" 

Storage 16 GB flash memory total 
(12 GB of usable 

memory) 

32 GB (8 GB used 
by the system) and 

64 GB microSDXC 

Memory 2 GB RAM 2 GB LPDDR3 
RAM 

Power 570 mAh Internal lithium-

ion battery 

2600 mAh External 

lithium-ion battery 

Display Prism projector, 640x360 
pixels,  covering 13° × 

7.3° of the visual field 

Super AMOLED, 
1920x1080 pixels 

Sound Bone conduction 

transducer 

Qualcomm DAC 

Camera 5 MP Camera, f/2.48 

aperture, focal length of 

2.8mm, FoV (75.7˚ x 
58.3˚) with 2528 x 1856 

pixel resolution. During 

video recording, image 
gets encoded to 1280 x 

720 pixels at 30fps (720p) 

13 MP Camera, f/2.2 

aperture, focal length 

of 4.2mm, FoV (69˚ 
x 49.6˚) with 1920 x 

1080 pixels at 30fps 

(1080p HD) 

In summary, the technical assessment showed that the 

navigation application implemented on both Google Glass and 

the Android cell phone was feasible and efficient in detecting, 

processing, and displaying AR-based navigational 

information. The application could operate well at normal 

walking speed and work satisfactorily at a fast walking pace. 

Regarding the time response and delay, it took about 140 ms 

to display the visual aid information and about 200 ms to play 

the auditory aid information. Since there is a lack of studies in 

this specific area that can provide a benchmark or user 

acceptance level of delay or lag, we consulted studies in the 

related human-computer interaction and virtual reality fields. 

It has been estimated that users' tolerance for key-press 

response delay is around 150 ms [37]. In the virtual reality 

setting, auditory delay around 240 ms has been shown to be 

tolerable without significant impact [38]. As a result, the 

delays in the current application seem to be tolerable. During 

the tests, the system responded promptly without any apparent 

delay that would affect navigation. 
TABLE II 

COMPARATIVE ANALYSIS OF TECHNICAL PERFORMANCE ASSESSMENTS 

CONDUCTED ON GOOGLE GLASS AND AN ANDROID CELL PHONE USING THE 

SAME AR-BASED NAVIGATION TECHNOLOGY 

Google Glass Samsung Galaxy S4 

Minimum 

percentage of 
features 

needed to 

initiate AR 
overlay 

processing  

45.0% on average for 

the nine locations 
(respectively 34%, 

37%, 34%, 49%, 53%, 

35%, 46%, 67%, 50%) 
with the speed 

between 6.4 km/h to 

7.6 km/h 

42.7%  on average for 

the nine locations 
(respectively 31%, 32%, 

22%, 36%, 47%, 33%, 

46%, 72%, 66%)with 
the speed between 6.0 

km/h to 7.9 km/h 

Percentage of 

features 

detected at a 
fast walking 

pace 

50.6%  on average for 

the nine locations 

(respectively 57%, 
45%, 44%, 53%, 40%, 

42%, 50%, 47%, 

77%)with an average 
speed of 6.4 km/h and 

minimum speed of 5.5 

km/h 

44.3%  on average for 

the nine locations 

(respectively 36%, 38%, 
40%, 24%, 55%, 63%, 

48%, 41%, 54%)with an 

average speed of 6.5 
km/h and minimum 

speed of 5.3 km/h 

Time taken to 

detect 95% of 

features 

95% of features 

detected under 1 s for 

all nine areas 
(respectively 0.81 s, 

0.93 s, 0.92 s, 0.84 s, 

1.07 s, 0.96 s, 0.88 s, 
0.89 s, 0.74 s) with an 

average speed of 

around 4.3 km/h 

95% of features detected 

under 1 s for all nine 

areas (respectively 0.76 
s, 0.74 s, 1.01 s, 0.85 s, 

0.92 s, 0.99 s, 0.93 s, 0.9 

s, 0.82 s) with an 
average speed of around 

3.9 km/h 

Time needed 
to generate 

each type of 

navigational 
information 

0.18 s   on average for 
all nine locations 

(respectively 0.17 s, 

0.25 s, 0.2 s, 0.19 s, 
0.13 s, 0.14 s, 0.2 s, 

0.19 s, 0.16 s) to 

generate audio 
augmentation; 0.14 s 

on average for all nine 
locations (respectively 

0.12 s, 0.11 s, 0.15 s, 

0.19 s, 0.17 s, 0.15 s, 
0.12 s, 0.1 s, 0.15 s) to 

generate visual 

direction arrows and 
texts 

0.22 s  on average for all 
nine locations 

(respectively 0.2 s, 0.27 

s, 0.18 s, 0.23 s, 0.15 s, 
0.24 s, 0.23 s, 0.26 s, 

0.24 s) to generate audio 

augmentation; 0.13 s  on 
average for all nine 

locations (respectively 
0.09 s, 0.16 s, 0.13 s, 

0.11 s, 0.1 s, 0.12 s, 0.1 

s, 0.2 s, 0.17 s) to 
generate visual direction 

arrows and texts  

Framerate About 12-18 fps About 14-23 fps 

V. HUMAN FACTORS STUDY

The overall goal of the human factors study was to test and 

evaluate the human performance and workload of using the 

AR-based indoor navigation system, by comparing the results 

across the three types of navigational aids including AR 

navigation implemented on Google Glass, AR navigation 

implemented on a smartphone, and a traditional paper map. 

The paper map was included as a baseline condition. The 

digital navigation devices (Google Glass and cell phone) use 

an egocentric perspective whereas the paper map uses an 

exocentric perspective [39]. Participants were recruited to 

navigate an indoor environment using the three aids in a 

within-subject design. The human factors measures included 
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traversal time, perceived accuracy, subjective workload, and 

route retention error. 

To navigate successfully, people rely on spatial knowledge 

and cognitive abilities that can build and use such knowledge. 

Human spatial knowledge in topographic contexts includes 

three levels – landmark knowledge, route knowledge, and 

configurational knowledge [40]. As people navigate, they tend 

to build spatial knowledge about the area into cognitive maps 

that represent the real world area [41]. When more cognitive 

resources and attention efforts are used to process spatial 

information and build the cognitive maps, the results often 

leave a stronger and keeper trace in memory.  

Digital navigation aids (Glass and cell phone conditions in 

the current study) provide turn by turn guidance and use an 

egocentric perspective, which is similar to the perspective of 

mental route knowledge represented as a sequence of 

egocentric visual images of landmarks with directions [42]. 

Users' cognitive maps formed while using digital navigation 

aids are often limited because of the ease to use the same 

egocentric perspective and the lower level of cognitive 

processing involved in passively following directions. In 

contrast, using a paper map involves much more cognitive 

processing and efforts. It requires spatial information to be 

mentally converted from the exocentric to the egocentric 

perspective. This helps the user develop comprehensive spatial 

cognitive maps [43]. While navigating with a exocentric map, 

users often need more cognitive processes such as mental 

rotation and zooming to establish correspondence between the 

map and the real world view [44]. This is why navigation with 

the exocentric perspective is often more difficult and time 

consuming than egocentric navigation [44][45]. However, 

active and deeper mental processing helps the learning and 

retention of cognitive maps [46].  

Based on the theories and previous research findings, we 

expected that digital navigation aids would require less mental 

workload and time and would be perceived as more accurate 

when compared against the paper map; however when using 

the paper map, participants would retain more spatial 

knowledge and hence would have less route retention error. 

Due to the natural characteristics of HMDs, we expected that 

Google Glass would be better at conveying AR directional 

information than the handheld cell phone. 

A. Method 

1) Participants 

Thirty nine adults (24 males and 15 females), all of whom 

were students from University of Waterloo, participated in this 

study. None of them had any previous experience with mobile 

navigational aids in indoor environments; however, all were 

well aware of mobile navigational aids and had experienced 

them in outdoor environments. The majority of the 

participants stated that they were confident in navigating in 

indoor environments with or without navigation aids. All had 

normal or corrected-to-normal visual and auditory acuities. 

The participants had various levels of familiarity with the 

testing environment. Some of them were very familiar with 

the environment, whereas others had never been there before. 

This individual difference should not affect the results because 

a within-subject design was used. 

2) Tasks and Materials 

Three different routes (Figure 3a) were formulated and 

optimized for the experiment to ensure that navigational 

instructions were added at the most appropriate places. Once 

the user interface was properly designed, it was deployed on 

both the handheld device (Samsung Galaxy S4-Android Cell 

Phone) and a wearable device (Google Glass). The third 

navigational aid was a paper map, which was a CAD 

(computer-aided design) version of the entire floor plan.  

The tasks required the participants to navigate through the 

test location and find specific books located on different 

shelves using different types of aids. Such tasks are typical 

representations of indoor navigation. When the participants 

approached the shelf using AR based digital aids, the audio 

channel informed the participant the target shelf number, and 

the visual channel pointed an arrow at that shelf alongside the 

text showing the shelf number. While using the paper map the 

user read the shelf number from the paper and visually 

searched for it. In the map retention test after the completion 

of the experiment (completing all three routes), participants 

were given a similar but not identical version of the floor plan 

to re-draw the routes (Figure 3b) as they remembered. 

 

 
(a) 

 

 
(b) 

 

Fig. 3.  (a) Three different routes used in the experiment. In the paper map 

condition, this map was given without the start points and the routes. Only the 

end points were shown. (b) The version of map that was used in the map 
retention test. No start point, end point, or any route was shown. 

 

3) Experimental Design and Measures 

The experiment used a within-subject design. The 

independent variable was the type of navigation aids, 

including three conditions − paper map, cell phone (handheld), 

and Google Glass (wearable). The order of experiencing the 

three navigational aids was balanced across subjects using a 

Latin square design. In addition, each navigational aid was 

equally tested on the three routes. The dependent variables 
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included subjective workload ratings using NASA-TLX (raw 

overall score), perceived accuracy, contextual retention error, 

and efficiency (i.e., traversal time/task completion time). Each 

dependent variable was individually measured for the three 

navigational aid conditions. With the hand-held cell phone, the 

application would automatically re-orient the display in 

landscape or portrait based on user preference. Majority of the 

participants used it in portrait. The Glass view was landscape. 

In order to measure unprepared route memory retention 

performance, the participants were asked to re-draw all the 

three trajectories only after completing all the three routes. 

Since the order of experiencing the three aids were balanced, 

the carryover effects should be controlled. Distance errors 

resulting from participants' map drawing were used to quantify 

the route retention error. The three target routes (Figure 3) had 

the shortest distance to their destinations, and therefore any 

extra distance drawn by the participants meant error. We 

compared the target routes on the map with the routes drawn 

by the participants, by superimposing both of them on a single 

map. The additional distance drawn by the participants was 

recorded as map retention distance error. In order to measure 

efficiency performance, we recorded the time taken by each 

subject to complete a single route (traversal time) for each 

device and calculated the average value for each aid condition. 

In addition, perceived accuracy was obtained through a 

questionnaire (5-point Likert scale) conducted after the 

experiment. Perceived accuracy here refers to how accurate 

the users perceived the navigational aids to be. It is not about 

the accuracy of 3D feature tracking algorithms used in this 

study. We used 3D feature tracking as an established method. 

Regarding the measurement and verification of 3D feature 

tracking accuracy, previous studies have documented the 

technical details, for example, benchmarking with 

corresponding ground truth poses or benchmarking with 

device data including inertial sensor data (e.g., gravity, 

acceleration, and rotation rate), camera properties (e.g., shutter 

time, gain, and focus), and time stamps [47]–[51]. We did not 

cover the details here due to limited space in this paper. The 

questionnaire in the current study also included other 

subjective evaluation questions for wearability comfort, 

usability control comfort, display comfort ratings, and 

subjective workload (raw NASA-TLX, without the weighting 

procedure). 

4) Procedure 

First, the participants read the information letter that 

described the details of the experiment, and then they filled the 

consent form and the pre-experiment questionnaire. Short 

practice for about 5 minutes was provided for them to get 

familiar with the devices. Most participants had not used 

Google Glass before, so we gave them adequate time to 

practice with the navigational technology until they felt fully 

confident to initiate the formal experiment. In each of the three 

trials, each participant was instructed to navigate using one of 

the three aids (wearable, handheld phone, and paper map) 

from the start location to the end location, taking the shortest 

route. Each end location was a locker at the test location. They 

were instructed to arrive at the destination as quickly as 

possible with a reasonable and safe walking speed in the same 

way for all three navigation conditions. Although different 

individuals may have different baseline walking speed, it 

should not affect our results because we used a repeated 

measures design. The experimenter shadowed and timed the 

participants. Once the participants completed testing the three 

aids, they were asked to fill the post-experiment 

questionnaires. Finally, they were given a blank floor map 

(Figure 3b) and were requested to draw the three routes as 

they remembered during the experiment. The participants 

drew all the three maps at the end after they had finished 

navigating all the routes and spent a few minutes filling the 

post experiment questionnaire. 

B. Results 

Initially, repeated measures MANOVA (multivariate 

analysis of variance) was conducted using SPSS (Version 22) 

to determine the effect of navigational aid type on the 

dependent variables, which included traversal time (task 

completion time), perceived accuracy, NASA-TLX (workload 

score), map retention distance error, and subjective evaluation 

scores (wearability comfort, display comfort, and usability 

control comfort).  

Preliminary assumption checking revealed that there was no 

univariate or multivariate outlier, as assessed by boxplot and 

Mahalanobis distance, respectively; there were linear 

relationships, as assessed by scatterplot; no multicollinearity 

was present as assessed by Pearson correlation. The data was 

not normally distributed, as assessed by Shapiro-Wilk’s and 

Kolmogorov-Smirnov’s test (p < 0.001). The assumption for 

homogeneity of variance/covariances, as assessed by Box's 

test of equality of covariance (p < 0.001), was also not met. 

However, MANOVA is robust to violations of multivariate 

normality and violations of homogeneity of 

variance/covariance, if groups are of nearly equal size [52]–

[54]. Since our groups were indeed of an equal size, we 

continued with the analysis. The MANOVA result showed 

that the effect on the dependent variables combined was 

significant, F(12, 220) = 9.735, p < 0.001; Pillai's Trace = 

0.694; partial η2 = 0.347.  

Then we followed it up with repeated measures ANOVA 

(analysis of variance) using SPSS (Version 22); pairwise 

comparisons were conducted (with Bonferroni correction) to 

compare the three types of aids. One-way repeated measures 

ANOVA is also considered to be very robust against the 

violation of normality; Greenhouse-Geisser correction was 

consulted when the sphericity assumption was violated  [55]–

[57]. The effect of aid type on perceived accuracy was 

significant, F(2, 76) = 29.622, p < 0.001, η2 = 0.438 as shown 

in Figure 4a. The wearable aid (4.46) was perceived to be 

more accurate than both cell phone (3.67) and paper map 

(3.00) conditions (p values < 0.001); difference of perceived 

accuracy found between the cell phone and paper map 

conditions was also significant (p = 0.011). 

The effect of aid type on map retention distance error was 

also significant, F(2, 76) = 11.056, p < 0.001, η2 = 0.225. No 

significant difference was found between the wearable (1.67 

m) and cell phone (1.54 m) conditions (p = 1.000), but both 

conditions had significantly larger retention error than the 

paper map (0.63 m) condition (p values ≤ 0.001) as shown in 

Figure 4b. 

Similarly, the effect of aid type on NASA-TLX overall 

workload score was significant, F(2, 76) = 40.239, p < 0.001, 
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η2 = 0.514. No significant difference was found between the 

wearable (21.52) and cell phone (28.53) conditions (p = 

0.059), but both of them had significantly smaller overall 

workload than the paper map (52.39) condition (p values < 

0.001), shown in Figure 4c. 

The effect of aid type on traversal time (task completion 

time) was significant, F(1.371, 52.116) = 10.515, p = 0.001, η2 

= 0.217, using the Greenhouse-Geisser correction 𝜀̂ = 0.686, 

because Mauchly’s Test showed that the sphericity assumption 

was violated, p < 0.001. No significant difference was found 

between the wearable (111.26 s) and cell phone (118.03 s) 

conditions (p = 1.000), but both of them had significantly 

shorter completion time than the paper map (219.21 s) 

condition (p values ≤ 0.008) as shown in Figure 4d. 

No significant effect was found on the wearability comfort 

(p = 0.162, η2 = 0.047) between the wearable (3.46), cell 

phone (4.05), and paper map condition (3.64).  Similarly no 

significant effect was found on usability control comfort (p = 

0.224, η2 = 0.078) between the wearable (3.97), cell phone 

(3.74), and paper map condition (3.58). Also no significant 

effect was found on display comfort ratings (p = 0.221, η2 = 

0.039) between the wearable (3.36), cell phone (3.79), and 

paper map condition (3.69). 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 4.  Effects of navigation aid type on (a) perceived accuracy, (b) route 
retention error, (c) NASA-TLX overall workload rating, and (d) efficiency. 

Error bars represent 95% confidence interval. 

C. Human Factors Study Discussion 

In this human factors experiment, the wearable device 

(Google Glass) was perceived to have the best accuracy. A 

potential explanation for this would be that the camera of the 

wearable device was located at a higher position than the 

handheld cell phone; the high position gave it a wider view for 

feature tracking, and it was also a more natural viewing angle. 

The camera of the cell phone was usually held at the mid-body 

level that is different from the normal viewing angle, and 

therefore it may be perceived as unnatural and less accurate. 

Also the HMD on the wearable device made the AR 

experience more intuitive. The virtual representation of 

directional instructions on the camera feed was directly 

concentrated on the pupil of the eye, and the camera also 

adjusted naturally with head movement. This feature enhanced 

the navigational experience of the wearable device as its 

interface became more focused and adaptive.  

A disadvantage of the cell phone condition is that it has to 

be held in an upright position, which makes users' arm tired. 

The way users held the mobile phone while navigation is not 

an ergonomic posture to maintain while walking. In contrast, 

HMD (such as Glass) does not have this issue. The results 

from the current study, however, did not show this 

disadvantage of the cell phone, probably because the route and 

test time were not long enough. Future studies need to test and 

compare the devices in longer routes with longer test duration 

to investigate this issue. 

The traversal time was not significantly different between 

the wearable and the cell phone conditions. The traditional 

paper map, however, was a very slow medium for directional 

assistance. It took participants almost twice as much time as 
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the two electronic device conditions. An explanation is that 

when using the paper map, users have to mentally understand 

and rotate the map and then translate it to the contextual 

environment. This is same as our expectation based on 

previous study findings. 

No significant difference was found on subjective comfort 

ratings (wearability comfort, usability control comfort, and 

display comfort) across the three aid types. This is possibly 

because each individual device had certain drawbacks that 

influenced the participants' experience. The cellphone had to 

be kept at a certain position and orientation in front of the 

head for the augmented information to match the real-world 

perspective. Glass has a display resolution smaller than the 

smartphone, and the display contrast may be low due to 

background glare. For the paper map condition, the floor plan 

was not easily explicable because the paper map had excessive 

information that made discerning the area of interest 

challenging. 

The NASA-TLX results showed that navigation using the 

paper map caused the highest workload. The participants had 

to analyze where they were on the map with respect to the 

environment and also identify their target location; then they 

had to constantly analyze the surrounding for potential clues. 

All this yielded a heavy toll on the time taken to complete the 

experiment and raised participant dissatisfaction. The 

workload values in the wearable and cell phone conditions 

were lower since neither was a cognitively strenuous exercise.  

Another key aspect we wanted to evaluate was route 

retention in case the user had to navigate the same routes 

without the navigational aids. We concluded that the wearable 

device and the cell phone performed poorly in this test as the 

retention errors were larger than the paper map condition. In 

the map retention test, we used a paper map similar (but not 

identical) to the one used in the navigation condition (Figure 

3). Alternatively, a blank piece of paper could be used. The 

advantage of using a blank paper is that it would not provide 

any reminder of the paper map used in the navigation test. 

However, the disadvantage of using a blank paper is that it 

would be very difficult to quantify map retention error without 

the necessary spatial and distance references (e.g., walls and 

corridors). As a result, we chose to use a similar paper map in 

the retention tests with design considerations to minimize its 

potential disadvantages. The navigation activity using the 

paper map was for a relatively short period of time (several 

minutes). There was a time delay from using the map as a 

navigation aid to the map retention test (at least 10 minutes). 

The participants were asked to complete other survey and 

workload questionnaires before finally asked to complete the 

memory retention test, minimizing any trace of the navigation 

map in the working memory. Participants were not told that 

there would be a map retention test until after all the 

navigation tests, so they should not have strong motivation to 

memorize the map. The navigation map did not contain start 

points or the shortest route information. Moreover, previous 

studies that administered a similar sketching question, on a 

blank paper, also reported results indicating that users of 

digital navigation devices had poorer understanding of the 

routes as compared to those who used paper maps [58]. 

Nevertheless, it is a potential limitation that the retention test 

paper map looks similar to the navigation aid paper map. An 

improvement in future studies could be adding the use of a 

blank paper as the first step of retention test, followed by the 

second step using a map with necessary spatial information. 

Combining the two methods may give a more comprehensive 

evaluation of map retention. Since the routes used in the 

current study were relatively short and simple, all the 

participants were able to reach all the three destinations, and 

nobody was lost during the task. There were very few cases 

where participants made a wrong turn, so navigation error was 

not regarded as a dependent variable. In such error cases, it 

was often only a couple of steps away from the correct route. 

When the digital aids were used, they could provide cues for 

participants to turn back and return to the correct path. When 

the paper map was used, we found that participants would stop 

and look around, and finally they can correct themselves back 

on track. However, this stop would increase the total task 

completion time, so this time variable was used as the 

dependent variable. Although it was not strictly measured, we 

observed that the digital aids could help people recover faster 

from such small errors when they happened. 

When using digital devices for navigation, participants get 

used to simply following the navigational instructions and are 

not involved in actively processing the surrounding 

environmental information. In contrast, when using a paper 

map, the participants have to analyze the environment 

alongside the map in order to navigate successfully. 

Automated navigation aids, resulting in worse map retention 

performance, could become a problem when they become 

dysfunctional, especially for users in critical situations like 

rescue workers or fire fighters. Regarding the paper map, it 

requires deeper understanding and mental processing of the 

environment. These processes increase navigation time and 

workload but at the same time they equip the user with 

adequate cues that help make future navigation a lot easier. A 

potential solution could be to develop adaptive automation aid 

systems that could balance the need for navigation aid and the 

need for map memorization and retention. Future studies are 

needed to identify better design solutions. 

VI. CONCLUSION AND FUTURE WORK 

With respect to our research questions, the results showed 

that, first, the developed solution passed the technical 

assessments and worked well when tested during usual 

walking scenarios. Second, the human factors study showed 

that the HMD aid was perceived to be more accurate, with 

similar performance and workload results to the handheld 

smartphone, but both had worse route retention when 

compared to the paper map. 

In the first technical assessment, the results showed that on 

average, the minimum average feature percentage needed to 

conduct appropriate navigation on the route was 

approximately 45%. In the second assessment, walking on the 

route at a faster speed than the general walking speed, we 

found that 50.6% of features were successfully detected on 

average, therefore detecting more features than the minimum 

needed. Both the first and second assessments found that the 

general walking speed to be lower than the threshold speed 

that was maintained during experimentation, therefore 

indicating that our developed system was feasible for practical 
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use at moderately fast walking speeds. The third assessment 

was conducted to figure out the average speed and maximum 

time the application would entail to work ideally (detect 95% 

of features). The maximum time for the system to identify 

95% of features was under 1 s at all areas with an average 

speed of around 4.34 km/h, which validated the fact that this 

application could operate ideally with maximum efficiency at 

normal walking speeds. In the last assessment, we measured 

the average time it took Google Glass to produce audio 

augmentation and visual direction information, which was 

0.18 s and 0.14 s respectively. This result confirmed that the 

application was highly efficient and able to quickly process 

and display the directional information.  

In the human factors experiment, the wearable device 

(Google Glass) was perceived to have the best accuracy. The 

traversal time was not significantly different between the 

wearable and the cell phone conditions; however, the paper 

map condition was comparatively time consuming. No 

significant difference was found on subjective comfort ratings 

(wearability comfort, usability control comfort, and display 

comfort) across the three aids. The NASA-TLX results 

showed that navigation using the paper map caused the highest 

workload. We concluded that the wearable device and the cell 

phone performed poorly in the memory retention test as their 

errors were much larger than the paper map condition. The 

wearable device was perceived to be more accurate, but 

objective performance and subjective workload results 

indicated that the wearable device condition was not 

significantly different from the handheld cell phone condition. 

This result might be explained by the fact that the current 

experiment was conducted in a simple indoor environment and 

used relatively shorter routes. We also faced technical 

difficulties as the Google Glass had limited battery life, and 

3D scanning during the pre-deployment stages was time 

consuming and complicated, which hampered our ability to 

conduct large scale tests. Based on the current results, we 

concluded that augmented reality indoor navigation 

implemented on the wearable device was neither worse nor 

better than the cell phone implementation. However, we still 

expect that the wearable implementation would be preferred if 

the task was performed for longer duration in a more complex 

environment. The current study, however, would form the 

basis for future research that could aim to use technologically 

superior wearable devices with better battery life and higher 

computational powers. 

In future studies, an alternative route retention test could be 

used as a way to avoid the need of using the paper map again. 

This route retention test could require participants to re-walk 

the routes without any assistive aids, and their time and route 

errors are recorded. It will be interesting to see which route 

retention test is better. 

It would also be a unique idea (thanks to an anonymous 

reviewer) to examine an improved assistive design that adds a 

small version of the area map in a corner of the AR or 

handheld display [59]. When the size of the map is properly 

selected, it might potentially improve map retention results. 

We would also be interested in examining the time duration 

taken for completing the route retention exercise and the 

effects of different navigational aids on this retention task 

time. The time measure would be especially meaningful in 

military and firefighting situations in which quick reaction is 

very important. 
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