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ABSTRACT 
Interactive and tangible computing platforms have garnered 
increased interest in the pursuit of embedding active 
learning pedagogies within curricula through educational 
technologies. Whilst Tangible User Interface (TUI) systems 
have successfully been developed to edutain children in 
various research, TUI architectures have seen limited 
deployment in more complex and abstract domains. In light 
of these limitations, this paper proposes an active TUI 
framework that addresses the challenges experienced in 
teaching and learning artificial intelligence (AI) within 
higher educational institutions. The proposal extends an 
aptly designed tabletop TUI architecture with the novel 
interactive paradigm of active tangible manipulatives to 
provide a more engaging and effective user interaction. The 
paper describes the deployment of the proposed TUI 
framework within an undergraduate laboratory session to 
aid in the teaching and learning of artificial neural 
networks. The experiment is assessed against currently 
adopted educational computer software and the obtained 
results highlight the potential of the proposed TUI 
framework to augment students’ gain in knowledge and 
understanding of abstracted threshold concepts in higher 
education.  
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INTRODUCTION 
Through the rapid evolution of technology, emerging 
interaction techniques have provided the educational 
domain with new and smarter possibilities to support 
cognitive learning processes [28]. This evolution has 
brought with it a higher standard of intuition which 
necessitates users to exert less effort to make use of 
computer systems [34]. Thus led technology to new 
interaction paradigms of touchscreens, gesture recognition 
devices and tangible interfaces which are slowly replacing 
the conventional computing peripherals such as mice, 
keyboards and controllers [23]. 

As educators seek to engage evermore in active learning 
concepts and constructive-based solutions instead of the 
traditional exposition-based teaching methods that follow a 
“teaching-by-telling” methodologies [38], interest in 
educational technology has augmented as a promising 
means to enable modes of autonomous learning [39]. The 
introduction of such novel and smarter interaction 
technologies within the educational industry has been 
supported by multiple academic researchers so to provide 
an enhanced and enriched teaching and learning experience 
[3,42].  

In particular, TUI systems provide an uniquly intuitaive 
user paradigm for students which operate through physical 
manipulation natively interlaced digital data representations 
[19]. This concept improves the interaction domain between 
human and computing machines by enabling users of TUI 
systems to take advantage of innate spatial and 
environmental skills [29], whilst interacting with and 
configuring physical objects [33]. Moreover, substituting 
real-life familiar objects instead of digital controlling 
options enables TUI systems to increase an application's 
intuitiveness which eases out the understanding of the 
concepts explained. 

The introduction of Tangible User Interfaces (TUIs) as an 
educational technology quickly received interest in such a 
context especially for its effectiveness towards augmenting 
student motivation [6]. Following a comparative study with 
Graphical User Interfaces (GUIs) on creative design 
processes, the interaction techniques provided by TUI 
architectures outlined a substantial enhancement in 
student’s design abilities as well a reduction of the 
cognitive load needed to interact with the technology [12].  
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Alternate studies further concluded that graspable/tangible 
user interfaces provide better retention of knowledge 
amongst students in educational applications [3] and are 
remarked as instruments that help learners in areas of; 
“development, sensory engagement, accessibility, 
collaborative activities and understanding of the world 
around them” [45]. 

The usefulness of TUIs for augmenting user’s ability in 
problem-solving environments was also outlined by [32], 
which proposes a generic intelligent TUI system, 
‘Combinatorix’, which allows students to explore and learn 
problem-solving techniques by manipulating physical 
objects and exposing potential solutions. The evaluation of 
this study showed that by aiding to picture all possible 
options to a given problem, the TUI system resulted in 
reduced cognitive stress amongst the evaluated students 
[32]. Similarly, ‘AstroGrasp’ was created to facilitate 
learning on astronomy concepts which allows students to 
interact with physical representations of the Earth and 
Moon, whilst observing representation of rays and shadows 
[1]. 

‘Augmented Chemistry’ embedded the TUI concept with 
augmented reality to allow students to inspect and interact 
and visualize imported molecular compounds from an 
extensive scientific database [4]. These enhancements in 
tangible manipulation and visualization were also 
corroborated in the study by [15] which developed a TUI 
which to aid explaining thermal transfer between objects. 
This was achieved by heating up an experimental material, 
whilst thermocouples monitored the heat transfer, which 
was subsequently displayed on the explainable tangible user 
interface provided. 

Apart from these bespoke implementations in advanced 
education, the potential of this technology was mainly 
investigated in the primary educational domain. Examples 
like ‘BrainExplorer’ provide an insight into the 
effectiveness of engaging users is more creative ways via 
“interactive storytelling systems” [40], that seek to 
eliminate the use of textbooks whilst providing a hands-on 
experience. Authors in [31] further attest that such the 
smarter paradigms provided via TUI systems help students 
more effectively in tasks such as “memorizing scientific 
terminology, understanding a dynamic system, and 
transferring knowledge to a new situation”. 

Yet, whilst integration of these learning benefits together 
with the inherent attractive and eye-catching aspects of TUI 
systems [14] led to positive results when integrated within 
younger learning environments, the technology has so far 
lacked equal successful application within higher 
educational institutions (HEIs). This peculiar domain 
provides a number of unique challenges with respect to the 
adoption of effective and intelligent educational systems to 
help students overcome their “concrete operational phase” 
when learning new concepts [43]. Thus, this requirement 
necessitates TUI technology to aptly mitigate the challenges 

faced in engaging a mature audience with concepts of 
higher orders of complexity and abstraction from concrete 
experiences [27].   

In contrast to the implementations in literature, this paper 
introduces a novel interaction concept within TUI 
frameworks by augmenting interactive surface architectures 
with active tangible manipulatives. This unique interactive 
paradigm presents TUI architectures with a smarter way to 
engage users and intelligently influence their scope of 
interaction. To further the limited successes identified in the 
literature on the of the efficacy of tangible systems in 
higher education, the proposed TUI architecture will be 
investigated for its ability to aid in the teaching and learning 
of abstracted Artificial Intelligence (AI) concepts such as 
Artificial Neural Networks (ANNs). The paper is organized 
so that a review of computer-aided techniques used to 
educate ANNs is presented in Section II. Section III 
outlines the proposed smart interactions within an adapted 
TUI architecture from both a tangible and digital 
perspective. The obtained results from deploying the system 
within a university programme are presented and discussed 
in Section IV. Finally, the last section outlines a brief 
conclusion of the presented work and the suitability aspects 
to this smart tangible computing in education. 

ARTIFICIAL NEURAL NETWORKS 
Within the domain of computer science, ANNs have 
quickly gained popularity as highly versatile machine 
learning algorithms with applicability in a myriad of 
applications ranging from image processing to autonomous 
control [18]. Defined by [11] as; “a computing system made 
up of a number of simple, highly interconnected processing 
elements, which process information by their dynamic state 
response to external inputs”, this AI algorithm is further 
strengthened by feedback techniques such as back-
propagation that provide a semi-supervised learning 
approach to optimize an output function convergence [7]. 

The ability of ANNs to address problems in classification, 
regression, time-series forecasting and complex system 
modeling [2] has consequently made the tuition of this 
machine learning (MLA) algorithm a stable within 
computer science and engineering degree programmes [13]. 
Yet, despite its widespread adoption, the complex nature of 
the ANN algorithmic processes poses a common difficulty 
to teaching within HEI contexts, thus leading academics to 
often rely on application software packages to aid in their 
educational delivery [30]. 

Amongst the most popular environments in use for this 
purpose are the Waikato Environment for Knowledge 
Analysis (WEKA) and MATLABTM, which allow students 
to process real datasets whilst making use of prebuilt 
libraries and toolboxes [13,16]. Both platforms provide 
user’s the ability to preprocess, classify, cluster, associate, 
visualize and select attributes for given data. However, 
albeit these tools allow students to analyze the results of 
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ANNs, their use is often overwhelming for inexperienced 
users and often hinders the student’s abilities deeply learn 
the algorithmic processes. 

Addressing the visualization limitations above is commonly 
achieved through using bespoke educational software for 
ANNs. Applications such as TensorFlow allow students to 
interact with simulators online to allow customization of 
neural network architectures and visualize the obtained 
results [37]. Similarly, the Sharky Neural Network 
application adopts animation aspects to introduce students 
to simulated process and adaptably visualize the obtained 
results [35]. Whilst contributing to the visualization aspects 
of teaching and learning ANNs, these packages however 
often lack technical flexibility . This limits the ability for 
students to experiment with operational parameters in order 
to conceptualize their understanding [26]. 

More adaptable platforms such as Scikit-Learning [8] and 
Theano [41] allow students to easily set up and customize 
neural networks by making use of implementation libraries. 
Packages such as Pylearn2 [17] and Pyevolve [9] further 
extend ANNs with other MLAs, such as genetic algorithms, 
to extract further analysis from the obtained data. 
Comparably, the Caffe package facilitates the adoption of 
ANNs in image datasets and allows for the development of 
neural network architectures for detecting and classifying 
objects within images [20]. The technical capabilities of 
these applications however often technically overburden 
students with significant coding requirements and thus 
limits their ability to properly comprehend the underlying 
concepts of the ANN algorithmic process.  

To this end, learns often resort to audiovisual media for 
studying the complex operational details of such 
algorithms, seeking educational channels on YouTube and 
virtual learning platforms to provide explanations and 
video-led examples [24]. Nevertheless, the sole use of 
diagrammatic representations and narration to explain the 
ANNs concepts, is functionally tantamount to the 
traditional lecturing approaches adopted within HEIs, 
which active learning pedagogies aimed to explicitly 
replace and augment using more engaging approaches. 

PROPOSED ACTIVE TUI FRAMEWORK 
In light of the above limitations to adopt educational 
technologies in this fundamental AI technique, this paper 
provides a contribution to enhance the teaching and 
learning of abstract concepts, such as those present in 
ANNs, using a real-time interactive educational tangible 
platform. Furthermore, in distinction from the current 
literature on TUI systems, this research proposes a novel 
interaction paradigm achieved by adopting active tangible 
manipulatives on an interactive surface architecture. This 
smarter technology is developed to aid mitigate the peculiar 
and augmented conceptual complexity experienced within 
HEI environments.  

Physical Overview 
The architectural system model proposed by this active TUI 
framework is that of an interactive tabletop design 
augmented with tangible computing. Based loosely on the 
MCRpd model proposed by [19], the proposal extends the 
interaction and feedback methodologies of TUI systems by 
integrating active microprocessor-controlled objects with a 
tabletop configuration. This design was conceived to enable 
the provision of additional manipulation capabilities which 
aid in the representation of abstracted educational concepts 
such as ANNs to HEI students. 

Considerations in hardware design were also undertaken to 
account for the peculiar nature of HEI which intrinsically 
caters for different student demographics. The advanced 
complexity levels of ANN process necessitated the need to 
various simultaneous visualizations and interactions to be 
undertaken hence needing larger interactive surface area 
than conventional tabletop systems. This was mitigated by 
designing a 1.3m2 interactive surface area tabletop whilst 
constraining the overall height dimensions to 90cm so as to 
retain comfortable reach and interaction by adult HEI 
students as detailed in [25]. These scaled architectural 
dimensions aided to engage larger numbers of students in 
collaborative interaction whilst accommodating for the 
comfortable visual and interaction dimensions of average-
height HEI students.  

 

Figure 1. Construction cross-section of the proposed TUI: 
a) Tabletop interactive surface,  
b) Short-throw projector,  
c) Wide-angle CCD camera with IR band-filter,  
d) Side trays with illuminated TUI placeholders 

 

As depicted in Figure 1, these design constrictions were 
addressed by making use of a short-throw projector 
mounted underneath a semi-transparent surface. The latter, 
made from an acrylic panel, was chosen due to its ability to 
clearly capture the projected image whilst allowing tangible 
objects to be seen from underneath. A wide-angle camera 
was employed to capture the surface area and provide 
visual feedback to the system. In tandem with the 
reacTIVision framework [21], the setup allows the 
conversion of tangible manipulation into digital control of 
the TUI software.  
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The active aspects of the proposed TUI system were 
designed using a distributed embedded microprocessor 
architecture. Adjacent to the table two tangible placeholder 
shelves were designed, as shown in Figure 1d, with 
integrated individually-controlled RGB lighting for each 
unique placeholder. This further enabled the system to 
direct students on appropriate use of TUI elements in a non-
coercive approach.  

Active Tangible Interaction 
The proposed TUI framework presents an innovative 
interactive engagement paradigm to students by yielding an 
additional domain of user interaction through a set of active 
3D physical objects. These objects were adapted by the TUI 
framework to allow the real-time design and configuration 
of neural network topologies as well as their operational 
parameters. The altering of these digital parameters using 
physical manipulatives is a central concept to TUI systems 
and hence a fundamental objective was to provide students 
with a heightened sense of intuitiveness and familiarity with 
tangible objects, thus reducing the barriers of interactivity 
commonly experienced by mature HEI students.  

The active tangible concept was developed by embedding 
tangibles with autonomous computational architectural 
units that communicate wirelessly with a central processing 
server. To this end, within the base of each tangible object, 
an Arduino NanoTM was integrated, together with a small 
LiPo battery and a Bluetooth® communication module. This 
bi-directional communication architecture enabled each 
tangible object to independently transmit and receive data 
from the server processor via a serial communication 
protocol. To enable the optical recognition of objects by the 
computer-vision toolkit, a unique ‘amoeba’ marker [5] was 
attached underneath each object. This provided the 
framework the capability to passively track and intelligently 
control active components within tangibles. Furthermore, 
this approach introduced real-time multichannel user 
feedback through passive computer-vision and active 
tactile/analog interaction. 

To aid in the teaching and learning process of ANN 
concepts, a ‘horse-racing analysis’ contextual example was 
adopted to explain the artificial intelligence algorithm. This 
context simulated the relational model of horse race time 
based on parametrical data of speed and health. The 
selection of this domain exploited the inherent 
familiarization and prior exposure of HEI students with the 
typical data of this application domain, hence perceptively 
reducing the cognitive load experienced by students whilst 
interacting with the novel framework. The aesthetic design 
and functionality of tangible objects were subsequently 
further adopted to symbolize and represent different ANN 
parameters ranging from input, hidden and output nodes as 
well as network parameters and configuration adapters. As 
pictured in Figure 2, these neural network concepts are 
innately expressed by the tangible objects within the ‘horse-
racing’ context in an instinctively recognizable manner. 

 

Figure 2. Active tangible objects contextualized for ANN 
operations including; 
a) Horse - Context Simulator Controller, 
b) Clouds – Hidden Layer nodes, 
c) Finish Podium – Output Visualization, 
d) Speedometer – Input Speed Value, 
e) Syringe – Input Health Value, 
f) Chronograph – Output Time Value, 
g) Weight – Synapse Weight Adjustment. 

Through embedded interaction with digital and physical 
feedback, these devices provided the TUI framework with 
the ability to computationally couple physical 
manipulations with ANN operands. These interactions are 
further elucidated in the following systematical 
descriptions: 

 Horse Simulator Controller (Figure 2a) – The horse 
tangible represents the contextual data scenario and 
consequently triggers the loading of the appropriate 
dataset on the neural network AI algorithm. Students 
dynamically use this tangible to alter between setup and 
configuration modes of the designed ANN using 
positional shifting of the manipulative. Rotating the 
tangible at any stage in execution mode further controls 
and alters the training rate of the algorithm. This 
configuration interaction hence allows students to 
visualize and understand the training and convergence 
process in different modes of speed. The dynamic 
interaction is further communicated to the user via 
actively controlled feedback which via embedded 
actuators animates the figurines legs to simulate a 
functional galloping action whose pace is directly 
mapped with the ANN training rate. 

 Cloud Nodes (Figure 2b) – A set of active cloud nodes 
were used to represent the abstruse nature of hidden layer 
nodes in ANN. Hence, by dynamically adding or 
removing these abstracted nodes, students were enabled 
to design and visualize the behavioural effects of 
differently configured topologies. The active tangibles 
were composed of translucent polylactide (PLA) material 
into which an actively controlled Light-Emitting-Diode 
(LED) was embedded. This intelligent interface aided 
student engagement by providing a color-coded relational 
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representation of output synapses. In addition, pervasive 
feedback interaction is used during the convergence 
process to intelligently engage student attention towards 
computational executions by timely triggered light 
strobes from the tangible. 

 Result Podium (Figure 2c) – This finish line tangible 
embedded the representation of output results computed 
after each ANN iteration. By rotating the tangible, 
students can alter the result visualization of either the 
tabulated output values or a graphical representation of 
the estimated percentage error fed back though each 
back-propagation epoch. 

 Speedometer (Figure 2d) – This active input tangible was 
designed to represent the variable speed of the simulated 
racing-horse input data. Via rotational interactions, 
students could alter the nodes input value which would be 
interactively reflected visually in both a displayed digital 
value as well as through proportionate dynamic analogue 
servo movement of the physical speedometer’s hand. 

 Syringe (Figure 2e) – The second input parameter was 
altered by users through the physical use of a syringe. 
This active tangible allowed students to alter the horse 
health data value which was exemplified as an input 
parameter to the ANN topology. 

 Chronograph (Figure 2f) – This tangible output 
representation provided students the ability to toggle 
through testing or training simulation modes on the 
network. By actively engaging with the tangible through 
positional and rotational interactions, students can 
provide the ANN with an expected output data value, 
which would allow students to visualize the convergence 
process of the neural network to the newly trained 
outcome. Alternatively, the removal of this object 
indicated algorithmic testing conditions where the ANN 
needed to derive the output data. 

 Weight Adjustment (Figure 2g) – This active TUI 
tangible was designed to allow students to experimentally 
learn and interact with the ANN operations. The 
translucent weight symbol, allowed students to select and 
configure internal ANN synapses by tangibly engaging 
with their parameters. By dynamically altering the RGB 
light from an embedded LED, the TUI framework 
provided intelligent feedback to users by changing its 
internal color to match that of the linked synapse. This 
mitigated the potential graphical clutter of complex 
topologies by allowing the TUI framework to provide 
positional assurance to students on the intended selection. 
Rotational interaction during setup stage also allowed 
students to configure the synaptic activation function 
whilst during configuration mode, the interaction would 
override the synaptic weight value with users input. This 
data value was further actively related back to students 
through a relational variation of lighting intensity of the 
physical tangible’s LED.  

Digital User Interaction 
The proposed TUI framework embedded digital 
information through an interweaved GUI that provided an 
intuitive physical interactive experience. In stark contrast to 
the limitations imposed by Windows, Icons, Menus, 
Pointers (WIMP) systems, the proposed TUI architecture 
endowed additional flexibility options that were exploited 
to augment user immersion and learning processes. 

The graphical interface was produced and implemented 
using Adobe Illustrator and the UnityTM game development 
environment. The framework behavioural interaction was 
programmed using C# which allowed the integration of 
animations based on the tangible information obtained 
through the TUIO communication protocol [22]. 
Furthermore, the framework integrated with a developed 
Python neural network simulator which whilst providing 
authentic representation of real-time data through functional 
AI computation also unbounded students in their flexibility 
to customize and configurate ANNs.  

The GUI interface pervasively aids student interaction by 
providing subtle visual cues which are designed to aid in 
the experimental learning process and digitally interlink 
with physical manipulation. The interweaved design 
elements between visual animations, TUI execution and 
user interaction of the proposed TUI framework are 
systematically detailed in this subsection through a review 
of the framework’s operation sequence. 

The startup interface, illustrated in Figure 3a, presents 
students with a sectional layout to aid in the stage design of 
the ANN. As shown within Figure 3, by suitably 
embedding visual iconic symbols, students are guided 
through the TUI interaction through projected cues. These 
help to instinctively stimulate tangible interaction using 
appropriate placeholder indication. Once objects are placed 
on the interactive surface, the TUI framework makes use of 
digital timers, animated via radial filling as shown in Figure 
3c, to allow users to assert their decided actions through 
physical manipulations. Following the successful 
registration of user interactions, the framework 
progressively advances through execution/customization 
stages, providing students with the ability to personalize the 
pace at which they progress through their learning process. 

 

Figure 3. Digital elements designed for pervasive user 
interaction using the proposed TUI framework. 
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Subsequent to the loading of the ‘horse-racing’ dataset, via 
the ‘horse’ scenario controller, the TUI framework presents 
the contextual network’s hyperparameters by visualizing 
the distinct input and output nodes of the ANN as illustrated 
in Figure 3b. Simultaneously, embedded LEDs actively 
flash on the respective input tangibles, pervasively diverting 
the student's attention towards the applicable interactive 
objects. Visual imagery further this smart interaction by 
helping students associate the digital/physical 
computational coupling by using indicative elements as 
pictured in Figure 3d. By manipulating the appropriate 
tangible, students are able to customize the input/output 
parameters for health, speed and time values, thus 
experimentally designing and configuring their custom 
simulation. Interactive feedback is provided during this 
stage by blending the use of pertinent icons, completion 
bars, and variable value scrolls, as shown in Figure 3e. This 
customization process is further reinforced within the TUI 
framework by the physical feedback provided using active 
actuators and input sensors on tangibles. 

The use of proxemic interaction is also embedded within 
the tangible user interface by allowing students to 
dynamically configure synaptic links between nodes by 
placing the respective tangibles in physical proximity. This 
allows students to freely customize and experiment with 
ANN topologies augmenting the students’ cognitive and 
learning process through user-centric progressive complex 
adaptions. To pervasively guide user’s interaction, cloud 
tangibles which at setup stage represent the insertion of 
hidden nodes, are also interactively animated, by lighting 
up internally using the embedded LEDs as shown in Figure 
4a. Once utilized and connected, color-coded internal 
synaptic links are projected on these tangible ‘hidden’ 
nodes, representing their connected topology as illustrated 
in Figure 4b. 

 

Figure 4. The configuration of hidden nodes and synapses 
using active cloud tangibles. 

Following the connection of the ANN topology, the weight 
adjustment controller can optionally be utilized to 
customize the activation function on the synapse. This 
active tangible object is timely animated to indicate 
availability to the user. Thus, once placed near a created 
synaptic link, students can alter the selection of an 
algorithmic function. Making use of rotational interaction 
guided via pertinent circular graphics as illustrated in 
Figure 5, the framework provides students with the ability 

to experiment with different functional operands, which are 
visually explained to students using familiar mathematical 
graphs. 

 

Figure 5. Selection of synapse activation function through 
rotational interaction and dynamic digital feedback. 

Whilst the ANN is being constructed, students are provided 
with the option to switch between setup and configuration 
mode led through visual projection of graphics adjacent to 
the horse controller as shown in Figure 6a. Once the 
tangible is positionally dragged onto the ‘start’ placeholder, 
the input graphical information is summarized for users as 
shown in Figure 6b, whilst a new set of visual operands is 
projected near the tangible object. As shown in Figure 6b, 
these rotational cues provide the user to set the ANN 
training rate, hence idling or speeding up the simulation as 
desired. In tandem with this interaction, the TUI framework 
actively governs the tangible controller to provide real-time 
interactive feedback by altering the actuated galloping 
motion of the horse in relational speed to the rotational 
digital selection. 

 

Figure 6. Visual digitization provided by the TUI 
framework in configuration mode. 

At the start of the simulation in configuration mode, 
synapses are individually assigned random weights as 
common in most ANN implementations. This visual 
representation makes use of a suitably designed color-
coding scheme, as shown in Figure 6c, to facilitate the 
student’s association of data. To further the experimental 
learning capabilities imparted by the TUI framework, the 
proposed implementation multiplexed the use of the 
‘weight adjustment’ object to enable customization of the 
initial data in configuration mode. The active tangible is 
therefore illuminated in varying light colors whilst the 
framework transitions to configuration mode, providing a 
persuasive indication to users via the physical domain on its 
potential use. Once placed on the interactive surface, the 
weight tangible is digitally augmented with a dynamic color 
wheel, illustrated in Figure 7a, which allows the user to 
accurately position and select individual synapses. 
Following the elapse of the interaction timer, the tangible 
object interactively changes light color to match the locked-
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in synoptic, indicating to the user the ability to configure 
specific data values on synapses via rotational interaction 
and digital visualizations as shown in Figure 7b. 

 

Figure 7. Tangible interaction allowing students to 
experimentally configure synaptic weight values. 

Consequent to the interactive customization of values, the 
framework aids students understanding the conceptual 
operation and convergence process of ANN through 
animated visuals. As shown in Figure 8a, data values are 
visualized traversing through nodes and synapses whilst 
appropriate animations are able to explain the mathematical 
value adjustments as signals propagate through the 
designed network. These dynamic visualizations provide a 
more intuitive understanding to the underlying concepts and 
procedural effects of the algorithm’s iterations. 
Furthermore, at the end of each animated epoch, the 
underlying ANN scripts compute and display the resultant 
values of the last few iterations in a tabular graphic 
projected adjacent to the podium tangible. By physically 
altering this output tangible, students are further able to 
graphically interpret the convergence error computed 
through the last iterations, dynamically monitoring the 
effects of weight tuning on the algorithms backpropagation 
adjustments and accuracy. 

 

Figure 8. Digital visualizations highlighting internal 
computations: 

a) Animated weight propagation and value calculation, 
b) Output result times per iteration together with 

backpropagated error percentage for convergence. 

Once the AI algorithm is sufficiently converged, students 
are able to further engage with the TUI framework to utilize 
and understand the developed ANN in predictive AI testing 
mode. In this mode of execution, the interweaved and 
perceptually coupled digital and physical domains, as 

pictured in Figure 9, enable students to self-evaluate the 
suitability and accurateness of their designed ANN 
topology by testing its validity on new input datasets. This 
allows students to individually self-assess their progress 
and uniquely customize the pace of their learning 
experience so as to obtain a deeper understanding of the AI 
concept. 

 

Figure 9. Perceptually and computationally coupled ANN 
model within; a) the physical domain,  

and b) the digital domain. 

EXPERIMENTAL EVALUATION 
The developed TUI framework was deployed for evaluation 
at Middlesex University Malta within undergraduate 
degrees in Computer Science and Information Technology. 
Convenience sampling was undertaken to select 32 students 
studying the module of Artificial Intelligence who 
voluntarily offered to participate in the evaluation study. 
This population sample size was deemed adequate in line 
with the guidelines in [44]. The undergraduate participants 
were either in their second or third year of study and varied 
in age between 18 and 24.  

To evaluate the effectiveness of the proposed TUI 
framework, a direct comparison was undertaken against 
currently employed PC-based educational technology using 
a GUI educational simulator. To ensure no additional 
experimental variables are introduced in the evaluation, a 
similar GUI software was developed to that created on the 
TUI framework. As visualized in Figure 10, the educational 
software was optimized for GUI interaction and usability 
whilst retaining identical functionality and educational 
capabilities. 

 

Figure 10. GUI software developed for comparative 
evaluation. 

Artificial neural networks is a foundational topic within the 
selected course and commonly forms a threshold concept 
towards the student’s progress and understanding of more 
complex algorithms. Hence, to maximize the evaluation 
potential of the proposed TUI framework, the experimental 
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sessions were scheduled to coincide with the natural 
delivery of this topic within the curriculum.  

Evaluation Methodology 
An evaluation methodology was implemented which was 
designed to yield a quantitative analysis of the effectiveness 
and suitability of the proposed TUI framework in HEI 
contexts. This evaluation data was obtained by using both a 
usability questionnaire and an open-ended assessment 
where questions covered both theoretical as well as 
practical design aspects of ANN concepts. Figure 11 
outlines the sequential flow of student evaluation, lecturing 
and assessment sessions; 

 

Figure 11. Evaluation stages designed for assessing the 
suitability of educational technologies for ANN concepts. 

To mitigate the potential bias introduced by the students’ 
apriori knowledge of ANN potentially acquired from their 
related work experience and varied demographics, a 
differential evaluation methodology was adopted to provide 
summative assessment on the level of knowledge gain 
obtained by students [10,36]. To this end, upon 
commencement all students were provided with a timed 
pre-session assessment on ANN knowledge. This 
examination was composed of 12 open-ended questions and 
covered various aspects of detail and conceptual 
understanding of the ANN concept. The results obtained 
from this assessment provided an individualistic knowledge 
baseline for each student prior to being provided formal 
tuition on ANN. 

Following this initial assessment, students collectively 
attended a short introductory session. This was delivered in 
traditional lecture format, whereby basic terminology and 
foundation principles for neural networks were introduced. 
This session was delivered by the usual lecturer using the 
standard lecture slides conventionally adopted for the 
module to ensure a consistent and appropriate explanation 
is provided. Subsequent to the lecture delivery, students 
were randomly split in two equal groups for their 
laboratory/seminar session on the topic. These cohorts 
composed the experimental and control groups respectively 
for the evaluation methodology described. As illustrated in 
Figure 11 during the laboratory sessions, students sub-
grouped in sets of four (4) to solve a number of given group 
work tasks. The latter were identical to both cohorts and 
involved the experimental design, construction and analysis 
of different ANNs topologies within a ‘horse-racing’ 

contextual example. The designed variable within the 
experiment was to enable students within different groups 
to utilize a different educational technology to undertake 
and solve the laboratory tasks. Thus, whilst the control 
group students adopted the traditional GUI-based 
educational software shown in Figure 10, the experimental 
group students were able to interact with the proposed TUI 
adaption pictured in Figure 9. 

Following the successful completion of their respective 
tasks, all students were provided with a usability 
questionnaire for the respective educational technology 
utilized as well as a second assessment using similar open-
ended questions on ANN concepts. The questions in this 
examination were designed to assess the various aspects of 
conceptual understanding including theoretical, detail-
focused,  procedural and problem-based knowledge as 
shown in the following questions extract:  

 Why is a Hidden Layer used in an ANN? 
 How does adding more Hidden Layers affect data? 
 What happens every time the data passes through 

Synapse? 
 Why is the result difference of the Expected Output 

and Actual Output important? 
These quantitative assessments were designed to provide an 
evaluation on the knowledge gain obtained by each 
individual student during the respectively attended session. 
Equitable analysis on the assessment grades together with 
the quantified subjective evaluation provided by students in 
relation to the interactivity and usability of the designed 
educational technology were able to aid evaluate the 
respective aptness and efficacy of the proposed TUI 
framework in HEI contexts. 

Results and Discussion 
The grades obtained by students within each of the 
assessment sessions are visually presented in Figure 12. 
The figure provides a comparative evaluation of the results 
obtained by students in each distinct question during their 
pre-session assessment (green) as well as their subsequent 
post-session assessment following interaction with a GUI-
based or TUI-based laboratory session (red or blue 
respectively). This data was evaluated for each individual 
student in both educational cohorts using a paired-sample t-
test.  

Results outlined that students undertaking the control 
laboratory improved their mark to 39.1% (σ: 15.6) from 
their initial pre-test score of 15.4% (σ: 3.1). On the other 
hand, students who engaged with the proposed TUI 
framework during the experimental setup achieved a post-
test average grade of 71.2% (σ: 14.4). Thus, in contrast to 
the 23.7% (σ: 16.4) knowledge gain obtained during the 
GUI-based computer laboratory sessions, the proposed TUI 
framework provided students with a knowledge gain of 
55.8% (σ: 13.7) at p < 0.001 as shown in the overall 
comparison in Figure 13.  
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Figure 12:  Average grade obtained for each assessed question during the: (left) Post-test of GUI control group, (center) Pre-test 
undertaken by all students prior to formal tuition on ANN, (right) experimental group after using the proposed TUI framework. 

Analyzed under an independent samples t-test, the proposed 
TUI framework resulted in a knowledge acquiring 
difference of 32% (σ: 6.1) at p < 0.001 with respect to the 
control student cohort. This difference was directly 
attributed to the effectiveness of the proposed tangible 
interactive framework to engage students with abstracted 
ANN operational concepts. This was achieved in stark 
contrast to the experimental control group which by 
adopting a feature-identical GUI setup, illustrated the 
limited capabilities of the educational technologies adopted 
conventionally in HEIs. 

he remarkable achievements obtained through the TUI 
interaction were further analyzed to obtain a deeper insight 
into the teaching and learning capabilities delivered by the 
framework. The nature of the open-ended questions 
delivered within assessments were thus segmented 
according to the different aspects of knowledge evaluated, 
as shown in Figure 13. 

 

Figure 13. Knowledge gain analyses between educational 
technologies. 

The aggregated results in Figure 13 show that both 
technologies performed with equitable effectives on ‘detail 
oriented’ aspects of knowledge with Q3 in Figure 12 
showing a marginal increased ability by GUI software to 
aid in teaching and learning theoretical definitions. 
Conversely however, results in Figure 13 immediately 
highlight the ability of the proposed TUI framework to aid 
students understand the procedural and theoretical aspects 
of ANN concepts deeper than that provided by similar GUI 
software. This can be attributed to the students’ ability to 
tangibly interact with the system’s active functionality 
using instinctive manipulations and feedback channels that 
augment focus and understanding of the conceptual 
representations. Furthermore, as outlined by performance 
difference in answering problem-based questions, the 
intrinsic capability of the proposed TUI framework to 
contextualize ANN operation within a familiar environment 
by using adequately designed tangible representations aids 
students to assimilate knowledge, thus heightening their 
ability to apply and understand the underlying abstracted 
concepts in problem-oriented scenarios. 

The aptness of the proposed TUI framework for adoption in 
HEI was also evaluated using a usability questionnaire that 
was provided to both groups of students after interacting 
with their respective educational technology. Using a bi-
polar five-level Likert scale, students were asked to 
quantify their experience in various aspects of their 
educational pursuit. The subjective usability results 
presented in Figure 14 outline the effectiveness of the 
appropriately designed TUI framework to be interacted by 
users in an intuitive, productive, and ultimately enjoyable 
manner. Student’s feedback demonstrated that albeit the 
GUI and TUI systems used projected the same information, 
the information in the TUI framework was perceived to be 
more effective in understanding and completing the 
intended ANN tasks.  

Session 5B: Intelligent Visualization and Smart Environments IUI 2018, March 7–11, 2018, Tokyo, Japan

543



 

Figure 14. Usability results for both educational 
technologies. 

As shown in Figure 14, a limiting usability factor was 
conversely noted in the easiness for users to recover the 
ANN to earlier versions, which when compared to ‘back 
button’ deployments in GUI software, the proposed TUI 
framework necessitated users to redefine parameters and 
connections by manipulating tangibles accordingly. 
Nevertheless, questions relating to efficiency in achieving 
the intended outcome illustrate that students still felt more 
productive when operating a TUI interface in developing 
and analyzing different ANN configurations. This statement 
was confirmed objectively by timing the duration that 
students took to collaboratively finish their assigned 
laboratory tasks successfully.  

A combined interpretation of results corroborates on the 
effectiveness of the proposed TUI architecture to interlace 
the digital information within the tangible domain through a 
more immersive interface using the novel active tangible 
interaction paradigm. This reflected on the framework’s 
heightened ability to engage multiple students together 
whilst facilitate the collaborative learning and engagement 
on contextual problem-solving scenarios. Whilst the paper 
described the TUI framework in context of a ‘horse-racing’ 
scenario for designing ANN topologies, the observed 
benefits from adoption of an active TUI framework can be 
equitably transferred to other AI contexts in light of the 
described TUI design considerations.  

CONCLUSION 
The contribution of this paper lies at the confluence of AI 
education and human-computer interaction. By addressing 
the limitations of educational technologies in higher 
educational contexts, this paper proposes an active TUI 
framework design which is able to cater for the peculiar 
teaching and learning requirements for abstracted concepts 
in HEI. Furthering the interactive paradigm of this 
technology, the described framework actively engages 
students by interweaving the physical and digital domains 
of interaction via the novel adoption of active tangible 
manipulatives on tabletop architectures. Contextualized for 
teaching and learning ANN algorithms, the proposed TUI 

framework was deployed in an evaluation process 
undertaken within an AI undergraduate programme. The 
experimental and collaborative learning paradigms 
provided by the tangible architecture led to engaged 
students achieving an increase in knowledge gain of 32% 
when experimentally compared to colleagues using 
traditional GUI software. In tandem with usability 
evaluation, the paper outlines the aptness and efficacy of 
embedded TUI frameworks as an educational technology in 
HEI to help mitigate the challenges encountered when 
teaching and learning abstract notions. 
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